
The Software Magazine
$2.50 April 1982 Volume II, No. 11 (ISSN 0279-2575, usps 597-830)

■Ul
re Of UNIX Bit Man ulation In P I-80

Full Sc
MINCE

en Progra ditors: The Ulti

mputing E ironment XLT86,
To Mini
Transla

Review And How

•out SpellStWhat

% DUTY CYCLE PRINTERS

SETTING NEW STANDARDS IN QUALITY

APART FROM THE REST

MODEL ML80 ML82A ML83A
Columns: 80 80 136
Print Speed: (cps) 80 120 120
Bidirectional/Short Line Seeking: — jX

Throughput: (Ipm)
20 Char/line 86 187 173
40 Char/line 51 123 117
80 Char/line 28 73 71

136 Char/line — — 46
Head Warranty — 200 million characters
Graphics Option: Block 60x66 60x66
RS 232: Opt. Std. Std.
Tractor Feed: Opt. Opt. Std.

ML84
136
200

2350
136
350

266
184
114

74

72x72
Opt.
Std.

500
340
210
136
500 million
72x72
Opt.
Std.

Friction Feed:
Pin Feed:
Super Scripts • Sub-Scripts • Underline: —
Colors: —

Immediate Delivery • Technical Assistance * Leasing * Maintenance • Interface Cables • Ribbons

GRAYDON-SHERMANJNC.
(212)289-3199 (201)467-1401 ★ TWX #710-983-4375 (GRAYDON MAWD)

UFcLiNca
The Software Magazine

April 1982

Editor-in-Chief: Edward H. Currie
Managing Editor: Jane Mellin
Administrative Assistant: Patricia Matthews
Production Assistant: K. Gartner
Typographer: Harold Black
Cover by K. Gartner

Volume II, No. 11

Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher. The single issue price is $2.50 for
copies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies
sent to all other countries is $3.60. All checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money

orders, VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all

correspondence to the Publisher at the below address.

Lifelines is a trademark of Lifelines Publishing Corp.
The Software Magazine is a trademark of Lifelines Publishing Corp.
SB-80 and SB-86 are trademarks of Lifeboat Associates.
BASIC-80 is a trademark of Microsoft, Inc.
CB80, CBASIC2, PL/l-80, MAC, XLT86, and DDT86 are trademarks, CP/M and CP/M-80
registered trademarks of Digital Research, Inc.
The CP/M Users Group is not affiliated with Digital Research, Inc.
DC HAYES and SMARTMODEM are trademarks of D.C. Hayes.
MINCE is a trademark of Mark of the Unicorn.
PMATE is a trademark of Phoenix Software Associates, Ltd.
KIBITS is a trademark of Bess Garber and Seton Kasmir.
Superbrain is a trademark of Intertec Corp.
T/MAKER II is a trademark of Peter Roizen.
WordStar and SpellStar are trademarks of MicroPro International Corp.
UNIX is a trademark of Bell Laboratories.
Z80 is a trademark of Zilog Corporation.

Lifelines (ISSN 0279-2575, USPS 597-830) is pub-
lished monthly at a subscription price of $18 for
twelve issues, when destined for the U.S., Canada, or
Mexico, $40 when destined for any other country.
Second-class postage paid at New York, New York.
POSTMASTER, please send changes of address to
Lifelines Publishing Corporation, 1651 Third Ave.,
New York, N.Y. 10028.

LSFELihiisd
The Software Magazine

April 1982 Volume II, No. 11

Contents Software Notes
Opinion Printer or Console From BASIC-80™

by Bob Kowitt 36Editorial Comments
by Edward H. Currie 2 A Pseudo-INKEY Function for CBASIC2™

by Bill Burton 37
Zoso 22 Macros of the Month
The UNIX™ Operating System Edited by Michael Olfe

A Patch for WordStar On The Superbrain™

43

The Future of UNIX Reported by Todd Katz and John Leroy 46by Jean L. Yates

Features
3

Product Status Reports
Operating Systems and Hard Disk ModulesFull Screen Program Editors: MINCE™ 35
New Versionsby Ward Christensen 7 50

Custom Enhancements to WordStar™ Bugs 52
by Robert Van Natta 12 Version List 54

A Lisp Computing Environment
by Harry Tennant, Ph.D. 15 Miscellaneous

What About SpellStar™? KIBITS™ 14by Robert Van Natta 25 A Call For Manuscripts 18The Ultimate Printer?
by Dave Hardy 28 MAG Announcement

Attention Dealers!
18
24Assembler Programming Tutorial: Other Instructions

by Ward Christensen 39 Gift Subscriptions 24
XLT86™, A Review And How To Minimize Cartoon 27

8080 To 8086 Translation Grief Renew 36by Kelly Smith 40
Notice 39Bit Manipulation in PL/ 1 -80™

by Michael J. Karas 48 We’re Sorry But . . . 52
Clarification 52The CP/M™ Users Group Response 52

CPMUG™ Volume 79 and Comments 47 Change of Address 52

pinion _____________
Editorial Comments Edward H. Currie

Loading support refers to the loading of
applications from mass storage de-
vices, as opposed to programs which
reside in read-only memory.

The so-called human interface provides
for common editing functions and in-
vocation of application programs; it
offers functions which permit the appli-
cation program to determine which pa-
rameters have been specified by the op-
erator.

iRMX consists of a nucleus which pro-
vides intertask communication, multi-
tasking, timer support and interrupt
control. The operating system inter-
faces "encapsulate" the specific details
of a given implementation by imple-
menting each mechanism as a type
manager. Such type managers provide
a set of objects that are defined by their
attributes and the operations per-
formed upon them. The basic object
types are defined as task, segment,
mailbox, semaphore, region, job and
extension. Interestingly enough, tasks
are also a subject, since tasks are active
elements of the system and perform op-
erations upon objects.

You are probably asking yourself: why
the interest in YAOP (i.e. Yet Another
Operating System)? Each of the operat-
ing systems we have discussed in recent
months has an important role to play,
and they are all fine systems. In the case
of single user, single tasking systems
where available memory size is a
significant issue, clearly MSDOS is the
operating system. For development en-
vironments, multi-user /multi-tasking
applications and users interested in a
UNIX type environment, XENIX is the
best choice. Finally for real time, per-
haps stand-alone applications, such as
ROM-based or industrial control sys-
tems iRMX86, is an excellent choice.

Lifeboat Associates is jointly sponsor-
ing the iRMX Users Group with Intel.
This group will gather iRMX public do-
main software for 8088/8086 systems,
publish a newsletter, distribute disk-
ettes containing the programs selected
for distribution from those contributed
and in general provide a library of pro-
grams and services to stimulate ex-
change of iRMX software.

Operating System Standards Emerge

This month Lifeboat Associates and
Microsoft participated in MS™DOS/
SB-86™ symposia in Santa Clara
California and New York City. Both
symposia were a resounding success
and made it very clear that MSDOS
will be the operating system for the
8088/8086 world. The all-day presen-
tation was divided into two sessions.
The morning session was a general
discussion of the eight- and sixteen-bit
operating systems for the single user,
single tasking environment, followed
by a technical sessions in the afternoon
on the var ious aspects of SB-86/
MSDOS. Particularly interesting was
the discussion of the role that XENIX'
™, Microsoft's version of UNIX, was
to play as their offering for the multi-
user, multi-tasking environment.

The attendees were left with an ap-
preciation for Microsoft's commitment
to operating systems and for the techni-
cal and commercial expertise which
went into MSDOS and XENIX. Parti-
cularly gratifying was the reception by
the press and their enthusiastic interest
in the discussion of standards. Watch
the trade publications for more and
more discussions of a fully sanctioned,
industry standard operating system for
the 8088/8086 world.

In the months to come we will reprint
some of the presentations and review
the others in editorials.

Intel's entry into the operating system
arena is an exciting product called
iRMX-86™. This sophisticated real
time operating system is designed to
provide the system designer with re-
duced application development costs,
improved portability of applications,
optimal utilization of hardware, and
support of sound development meth-
odology. iRMX-86 is intended to sup-
port multi-user (actually multi-
programming), multi-tasking, inter-
rupt mapping, timer support, memory
allocation, device support, file sup-
port, loading support and a human in-
terface.

Often in real time environments it is
necessary to have several programs
running concurrently. Each such pro-

gram is called a task and this situation
is referred to as a multi-tasking en-
vironment. Note that such programs
may actually only appear to be running
concurrently, as in the case of a single
processor environment where events
are occurring slowly enough to allow
tasks to be effectively running simulta-
neously. In other environments there
may be multiple processors each run-
ning one or more tasks, but each is un-
der the purview of a master processor.

Since most real time environments are
event-driven there must be an interrupt
structure to manage the various tasks.
Tasks are typically assigned priorities
as to relative importance in terms of
system response. Thus a task of lower
priority will be "interrupted" when a
higher priority task must be serviced.
The system then returns to servicing
the original task until such time as the
task is completed or another higher
priority request occurs.

Memory allocation is an important as-
pect of real time systems in which con-
current tasks are supported. Obviously
each task will have specific memory re-
quirements, at least in terms of minimal
memory allocation to the task. This ap-
proach is vastly superior to fixed parti-
tioning of memory.

Device support refers to such things as
device independent I/O, in which the
application does not have to concern
itself with the specific nature of an I/O
device but rather acts as if all I/O
devices are accessed the same way. This
greatly simplifies the tasks of the ap-
plication program; it is in fact interact-
ing with a wide variety of I/O devices
but is able to communicate with all of
them in the same manner.

File support refers to the management
of a secondary mass storage device.
Such management is concerned with
dynamic as opposed to fixed or static
allocation of random access space,
locations of each file, file naming, etc.
Thus the operating system allows the
application to treat a single random ac-
cess device as if it were many separate
devices, each of which may be ran-
domly accessed.

Lifelines, April 19822

ON UNIX
The Future of UNIX

Jean L. Yates

and has grown to be the largest of
several user groups today.

Around 1979, the press began to pick
up stories from innovative companies
such as Microsoft, Zilog, Onyx and In-
teractive Systems, and commerical in-
terest in UNIX began to grow. Interac-
tive Systems was the first commercial
systems house to offer UNIX, and has
been joined by many other companies.
Microsoft began developing its XENIX
operating system, UNIX Version 7 with
modifications, several years ago and is
today in the process of bringing it to
market on three microprocessors.

As the 16-bit microprocessors were in-
troduced to the commercial communi-
ty, a question arose quite quickly: what
software do we use? The semiconduc-
tor houses were not oriented towards
extensive software development, and
with the exception perhaps of Zilog,
did not prepare adequately for oper-
ating system needs. Although Zilog to-
day has the best supported UNIX oper-
ating system of the major micropro-
cessor manufacturers, the other com-
panies are coming up quickly behind
Zilog as they recognize the demand for
the UNIX operating system. Although
Intel is attempting to push its own oper-
ating systems, lack of applications soft-
ware and relative simplicity in com-
parison to UNIX may limit its desirabil-
ity to end users. Business people today
see comparisons of $2-5 million for de-
veloping their own operating system
versus buying UNIX source and modi-
fying it to their needs. Also, by main-
taining compatibili ty with UNIX
System III at an applications software
level, they know that there will be
many different applications packages
available for their equipment.

The last two years have seen a slow
speed-up in the demand for ports.
Cross compilers and other materials

(continued next page)

Creating a de facto StandardThe UNIX operating system from Bell
Laboratories is at the heart of a dy-
namic market that is changing rapidly.
Presently, ATT accepts about one
VAX or PDP-11 per week and many of
these computers run UNIX either on or
along with VMS, the DEC operating
system. It is estimated that about five
thousand PDP-11 and VAX computers
run UNIX today and the number con-
tinues to expand, although the largest
increases will no longer be in DEC
hardware but in microprocessor driven
ha rdware as we move into the
1982-1983 timeframe. Today there are
over one hundred UNIX based micro
and minicomputers under develop-
ment, and although only a few of them
have been released, we will see a deluge
of products in the next two years. The
major manufacturers, along with small
companies, are devising microproces-
ser driven UNIX based systems.

One key to the pick up in the UNIX
market was the introduction by The
Bell System of low end user prices.
Binary licensing per user is now as little
as $40 to a source code licensee for
resale. This brings UNIX into the same
price range as CP/M.

UNIX based office automation systems
are beginning to achieve market share
from mostly PDP-11 or VAX based
equipment. Microprocessor driven
machines such as the Fortune Systems
single user workstation will also
achieve significant marketshare, par-
ticularly networked together with net-
working software and hardware, such
as the 3COM product for netting UNIX
into Ethernet.

Major corporations are also accepting
UNIX as an internal standard. Com-
panies such as Hughes Aircraft, Ford
Aerospace, and TRW utilize UNIX as a
standard for their standard operating
system for their DP shops.

Lifelines, Volume II, Number 11

How did UNIX become so popular and
widespread? To begin with, a key fac-
tor was the donation of UNIX to
universities by Bell Labs. For about
$200, universities could purchase
source licenses for educational pur-
poses. This resulted in a widespread
utilization of UNIX as the training tool
of choice in computer science depart-
ments. Today, almost ninety percent of
the computer science departments in
universities utilize UNIX in some form
or another.

Students and computer science pro-
fessors proved UNIX's portability as a
concept. They had a vested interest in
maintaining the portability of their
research data and software, and much
of the development of the UNIX por-
tability features was achieved under
joint agreements with the Bell System
and universities. Berkeley, in par-
ticular, has produced an outstanding
port of UNIX to the VAX computer and
universities such as MIT and Stanford
have produced microprocessor ports.
In MIT and Stanford's case, the ports
were to the 68000 microprocessor.

UNIX has been available to universities
for about six years, and the result is
that the students of these computer
sicence departments are now in in-
dustrial organizations across the coun-
try, and they know and like UNIX as a
tool. More and more students know-
ledgeable in C and UNIX are entering
the labor force.

Users groups began in the academic
world with a 1974/1975 meeting called
by Dr. Fabry, a senior professor at
Berkeley. Dr. Fabry today is in charge
of Berkeley's BSD 4.1 VAX UNIX and
continues to train students in the use
and theory of operating systems. The
USENIX user group started in 1975,

UNIX — A TRANSPORTABLE SYSTEM

1969 1971 1977 1979

VAX
11-78

INTERDATA
8/32PDP-7 PDP-11

LSI-11

198219811980

IBM
4330?

PERKIN
ELMERZ8000

UNIVAC
1100/60M68000

8086

UNIX—
A Transportable System

I will now go over the history of UNIX
briefly. UNIX was developed in the as-
sembly language of the PDP-7 in 1969
by Ken Thompson, and later rewritten
into the language C, developed by
Dennis Ritchie, and moved onto the
PDP-11. Starting with Version 5, the
first version released to universities,
UNIX became more transportable; a
number of projects in the following
years moved it onto different ma-
chines. Practically the entire series of
PDP-11 computers have UNIX on them
and in 1977, LSI and Interdata 8/32
machines were ported. In 1979, Ber-
keley ported to the VAX and another
research institution ported UNIX onto
the Prime computer.

1980 saw the beginning development of
porting tools to the microprocessors,
and the introduuction of the UNIVAX
1100/60. In 1981, the Perkin-Elmer 32--
bit super minicomputer with UNIX was
greeted with enthusiasm by end users
and the Amdahl 470 with UNIX was in-
troduced with unanticipated levels of
success. 1982 will see the introduction
of IBM's Series One with UNIX and at
least 40 microprocessor driven com-
puters using the UNIX operating
system.

UNIX Flexibility

The flexibility of UNIX is seen in the
foil presented here. In 1969 it was a
non-reentrant non-transportable pro-
duct, but by 1973 it had become a mul-
tiprogramming reentrant product with
fairly high levels of portability. 1975
saw mult iprocessor UNIX called
MUNIX and the Arpanet interface.
1976 saw the INGRIS data base at Ber-
keley which still continues and 1977
saw the first ports to microprocessors
as well as to the superminis. MERT, a
real time version of UNIX, was devel-
oped at Bell Labs around 1977. Also in
the 1977 timeframe were the initial re-
search oriented developments of micro
and mini networks and satellite proces-
sors. This charted course in the foil
could be elaborated on to include en-
hancements such as the UCLA security
kernel, and a wide variety of board
level ports and application packages
developed for the UNIX system.

needed to port UNIX have taken time
to develop. Successful downloading of
minicomputer developed applications
programs is now beginning to occur be-
hind successful ports of UNIX onto mi-
croprocessor driven systems. This
trend of porting minicomputer devel-
oped applications software is one point
for UNIX winning out over CP/M in
the 16-bit world. Multiuser, multitask-
ing applications packages designed on
minicomputers for medium-sized cor-
porations, in languages including
COBOL and FORTRAN, are being
downloaded to microprocessor driven
systems. This software is tested, debug-
ged, and has been, in some cases, in-

stalled in minicomputer installations
for several years. Although the pricing
must be lowered to impact the micro-
computer industry, this software offers
such significant advantages over mi-
crocomputer developed products that
it, if enough is downloaded, will pre-
vail over any number of CP/M devel-
oped applications —even if those appli-
cations are moved to greater complex-
ity by the developers. Within the UNIX
operating system itself, several applica-
tions programs require very little clean
up to become word processors, desk-
top calculators, spread sheets, and
other applications.

Lifelines, April 19824

introduced System III with significant
price reductions and the beginnings of
increasing developments of commer-
cially oriented applications packages.
1982 will see the IBM Series One, lend-
ing increasing credibility to UNIX as a
commercial product. Perhaps support
from DEC for UNIX, and an applica-
tions package that will sell UNIX,
Writers Workbench, will also have ma-
jor impact. This unique package is not
a word processor, but rather is an auto-

mated style guide that checks gram-
mar, syntax, spelling and consistency
within documents to increase the speed
and accuracy with which the written
material can be prepared as business or
technically oriented documents. Also
in 1982 we will see the introduction of
mini and microcomputers from major
manufacturers with the UNIX operat-
ing system, along with at least several
68000 based smart terminals using
UNIX, with upgrade capabilities.

Major UNIX Milestones

As you can see from the foil, UNIX be-
ing written into C was our first mile-
stone, followed by its transport to a
variety of CPUs. From a commercial
standpoint, the first UNIX system
house introduction was quite signifi-
cant. 1980 saw the microprocessor use
of UNIX interest exploding, etc. 1981

UNIX FLEXIBILITY

MINI
UNIPROGRAMMING,

NON-REENTRANT
69

MINI
MULTI-

PROGRAMMING,
REENTRANT

73

MINI
MULTI-

PROCESSOR
“MUNIX”

ARPANET
INTERFACE

75 75

“INGRES”
DATA BASE

76 77 MICRO

MINI
MULTI-

PROCESSOR
“MERT”

SUPER
MINI

77 77

MICRO/
MINI

NETWORK

SATELLITE
PROCESSORS 75 75

MAJOR UNIX MILESTONES
1977 1981

16-32 Bit Transportability Project IBM 4430 Proposal
First UNIX System House

1980
Transported to Various Micros
UNIX Interest Explodes
UNIX Touted as OS Standard (continued next page)

5

1969
First UNIX (Assembly Language)

1973
UNIX Written in C

Lifelines, Volume II, Number 11

directions of the input or output. This
is called a pipe and is one of the basic
concepts of UNIX that makes it so
powerful. For an end user, it simply
results in the ability to send a file
through several programs and gather
results that would otherwise take many
more steps to achieve.

Although pipes were designed in a pro-
gramming environment, for applica-

tions they offer significant advantages.
For example, a systems house or OEM
devising added value for their product
can create a series of pipes and filters,
systems calls, and related UNIX utili-
ties to perform a series of common of-
fice tasks requiring file manipulation
and management. Creation of these
pipes is much faster than writing pro-
grams. In this sense, UNIX commands
act as sort of a quasi-macro language.

UNIX Concurrent File
Processing

For a moment, let's briefly take a look
at what for many of you must be a very
simple concept but for others may be
new. As you can see from processes 1,
2, and 3 in the drawing, this system
handles buffering and synchroniza-
tion. The programs are oblivious to the

UNIX CONCURRENT FILE PROCESSING

START P1, P2, P3 SIMULTANEOUSLY RETURN TO READ
ANOTHER RECORD

I I
/ I
/ I

V I
\ I
\ I
\ I

I
I

/ I
/ I

/ I
I

PROGRAM
P1

P1 INPUT
RECORD

P1 OUTPUT
RECORD/P2

INPUT
RECORD

PROGRAM
P2

P2 OUTPUT
RECORD/P3

INPUT
RECORD

PROGRAM
3

SYSTEM HANDLES BUFFERING
AND SYNCHRONIZATION

PROGRAMS ARE OBLIVIOUS
TO THE I/O REDIRECTION

CALLED A PIPE

P3 OUTPUT
RECORD

Lifelines, April 19826

Features

Full Screen Program Editors:
MINCE

Ward Christensen
edit by minimizing seek time as the file
is being transferred to and from the
swap file. MINCE looks for the swap-
ping file first on the logged in disk, then
on A:. I keep my swap file on B:, and
log in B: before issuing the MINCE
command.

ERGONOMICS. MINCE uses a
mnemonic approach to laying out the
keyboard. I call it that because of the
dictionary definition of mnemonic: "an
aid to memory". Control-B is used for
cursor back, control-F for cursor for-
ward, etc.

MINCE has over 80 commands. Don't
let this throw you - the most frequently
used subsets of these are quite easy to
remember. For example, control-N
moves the cursor to the (N)ext line.
Other similarly easy-to-remember con-
trol keys are: (F)orward, (B)ack,
(P)revious line, (D)elete character,
(K)ill line, etc. In a consistent manner,
ESC extends the functions of the con-
trol keys. For example, control-F
moves the cursor forward one char-
acter but ESC-F moves it forward one
word.

I feel there is a cost to using the
mnemonic approach in laying out the
keyboard. Specifically, the control-B
for character-back is just too long a
reach. I feel like I'm back in eighth
grade tied to the piano chair forced to
practice my finger exercises.

The eighty or so functions in MINCE
add to the ease of use. For example, in
addition to being able to go back one
character, you can return to the front of
the file, front of a sentence, or front of a
word. Particularly nice for program-
ming is the "newline and indent" key. It
places you on the next line, indented
the same distance as the current line.
Surely intended for structured pro-
gramming, it is also nice for assembler,
where most of the time you are pressing
return and then tab, to write the next
op-code. With MINCE, if the line you
are on started with a tab, and you want

(continued next page)

to make it more durable.

The material I have mentioned so far is
all that used to be provided. Now it ac-
counts for only about one half of the
larger inch-thick manual that Mark of
the Unicorn has been shipping since
August 1981. This more complete man-
ual includes the following additions:

(1) Program Logic;
(la) Generalities, (lb) Specifics,
(1c) Extending and Modifying
MINCE;

(2) Entry points;
(3) Source Code;
(4) The Terminal Abstraction;
(5) Theory and Practice of Text

Editors: this section is terrific - let me
give you some samples: Memory Man-
agement; Buffer Gap; Gap Size; Multi-
ple Gaps and Why They Don't Work;
The Hidden Second Gap; Multiple Buf-
fers; Incremental Redisplay; - heavy,
interesting reading if you like that kind
of detail.

MINCE (from Mark of the Unicom) is
the editor that got me thinking about
doing this series of editor reviews. Its
promise of multi-file edits and split
screen was irresistible.

The MINCE promise is true. It has pro-
ven to be enjoyable, sometimes amaz-
ing, and just plain fun.

MINCE, which stands for "MINCE Is
Not Complete EMACS", is based upon
the EMACS editor from MIT. It quite
faithfully mimics the functions of
EMACS.

I enjoyed my first experience with
MINCE immensely. I installed it, then
spent the next five hours trying every
command. The neighbors must have
thought I was nuts, laughing and
chuckling with each new discovery.

Evaluation

DOCUMENTATION. The manual
is huge - about an inch thick - although
printed on only one side. Its style is
very friendly and humorous, yet pre-
cise and complete. An example of the
humor: "Remember, a computer is,
among other things, a device for mak-
ing more mistakes faster than ever
before possible."

Documentation consists of:

(1) an installation guide;
(2) eight lessons, including some on

disk for you to work with;
(3) Programmer's Introduction to

MINCE, for those who are familiar
with other editors;

(4) MINCE User's Guide: Explains
the basic principles you should under-
stand;

(5) complete command list;
(6) Command Summary; and
(7) a separate one-page command

summary.

The one-page command summary is
something you will frequently use. I
laminated mine in clear contact paper

Lifelines, Volume II, Number 11

SPEED. MINCE is adequately fast.
MINCE earned an early but now un-
true reputation for being slow. Written
in BDS C, it suffers a bit from the sim-
ple fact that the 8080 cannot efficiently
handle the stack-relative references
heavily used by the C language. For
version 2.6, Mark of the Unicorn re-
wrote the most time-dependent rou-
tines in 8080 assembler. That pretty
much solved the speed problem.

The speed of MINCE is also affected by
the need for MINCE to utilize a virtual
memory scheme using a large swap-
ping file. This comes from its powerful
generalized nature i.e. multiple buffers,
multiple files. They recommend a 64K
swap file placed close to the front of the
disk so it doesn't have far to seek when
accessing the directory.

I highly agree with the author's recom-
mendation that you place the swapping
file near the front of the disk. I prefer
that it even be on another disk. This
will speed up starting and ending the

This makes it hard to use MINCE to
read a document. It completely re-
draws the screen any time you move
the cursor off the top or bottom of the
screen. It is quite hard to pick up where
you left off.

File scrolling is transparent to the user
because of the virtual memory scheme
implemented with the swapping file.

INSERT. In the normal mode of
operation, MINCE control characters
move the cursor or perform com-
mands, and printable characters insert
into the file and on the screen. I used the
configurability of MINCE to make the
normal mode NOT insert. Instead I use
a control key to select insert mode and
another to go back to overtype mode.

OVERTYPE. Only in a mode called
"page" do you overtype. It allows you
to move the cursor anywhere on the
screen. For example, when you move
the cursor up from the end of a long line
to a shorter line, it automatically ex-
tends the shorter line with spaces. Keys
behave a bit differently; cursor-back
doesn't wrap from the front of a line to
the end of the previous line. Tabs
automatically expand to spaces, mak-
ing page mode unsuitable for assembler
programming.

UNDO-KEY. This is a slick feature.
At the bottom of the screen on the right
of the status line is an *. When you
have deleted something either by tag-
ging a block and deleting it, or by press-
ing one of the line delete keys (delete to
end of line or delete entire line), the
deleted data goes into a delete buffer
and * 4- appears at the end of the status
line. The + means you may do more
deleting and it will append to the buf-
fer. When you next do some non-
deleting function such as cursor move-
ment, the + turns off. At this time you
still have the deleted text in the delete
buffer and can yank it back in any-
where you want. Doing any additional
delete operation will overwrite the
delete buffer. Using a special control
key, you may explicitly ask to append
to a non-+ delete buffer.

The MINCE undo key is nicely imple-
mented to allow recovery from dis-
asters - erroneous block deletes for ex-
ample - and facilitates a simple block
mark-and-copy operation.

the next one to start the same way, just
press the indent key. This feature is also
convenient for text. For example, when
writing the return address in a letter,
where you indent forty characters or
so; you can write the street on one line,
city on another and date on the last,
then press 'newline and indent" and
save typing all the tabs.

Another useful ergonomic factor is that
the bottom of the screen shows what
percent of the way through the file you
are.

MINCE relies heavily on the ESC key.
This makes the location of the ESC key
on your keyboard quite relevant, as
you will find yourself using it quite
often.

I am sorry MINCE doesn't scroll the
screen a line at a time. Instead, when
you are about to go off the screen, it
erases and redraws the entire screen,
positioning the cursor in the middle
line. You can "sort of" get it to scroll by
using a re-draw control key; if you
move the cursor down one line then
press re-draw, it clears and redraws.
This effectively only moves one line,
although somewhat slowly.

There is one key assignment in the stan-
dard MINCE which I didn't care for
and have changed by reconfiguration.
Control-V is used to scroll one screen
down, which is OK. To scroll up,
however, you must press ESC-V. I like
a full screen editor which performs all
of its commonly-used cursor move-
ment functions by allowing you to
"park your pinkie on the control key",
then letting you press the various keys
necessary to move up or down a line or
a screen, etc. I just didn't like switching
from control-V to ESC-V.

able to execute it in one afternoon. I
even added a couple of relatively trivial
functions to implement control keys
for insert mode and overtype mode,
which MINCE did not implement in a
way I liked. When that worked, I tack-
led a bigger project - adding a new
command to process characters with
the high bit on, such as produced by
PMATE and even more by WordStar.
Without this change MINCE cannot
adequately process files which do not
have the high bit of each character
zeroed. There are other alternatives:
WordMaster, and CP/M's ED, and PIP
with the [Z option, all produce files
which have the high bit zeroed.

EASY TO LEARN. As I mentioned, I
tried out every function MINCE was
capable of in five hours. That is more a
sign of how rich the functions are than
of how hard it is to learn. The basic cur-
sor movement, delete, and insert func-
tions are easy to learn because of their
mnemonic significance. With the one-
page command summary at your side,
you will have no trouble.

The lessons and documentation help
the learning process too.

Objective Evaluation

Video-Related Criteria

FULL SCREEN. There are keys to
move the cursor one line up or down,
one character left or right, one word
left or right, a sentence back or for-
ward, or a paragraph back or forward.

The cursor-up and cursor-down con-
trol keys do not behave as they do on
other ed i to r s I have seen; they
remember the column and try to stay in
the same column after movement.

There are keys to move to the begin-
ning of the line, end of line, to open up
a new line to type into, etc.

The repeat key (see below) nicely ex-
tends these functions.

SCROLLING. There are keys to
scroll up or down one screen. The
repeat key may be used. Separate ESC-
key combinations are used to go to the
top or bottom of the file.

There is NO line-at-a-time scrolling!

CONFIGURABILITY. You initially
set up MINCE for a specific terminal,
by running a configure program. It has
a terminal selection menu including
eighteen terminals!

In addition, if you have BDS C, you
can completely tailor the keyboard to
your needs. You can even write your
own command processors, or modify
the supplied ones. This is most im-
pressive if you aren't afraid to tackle it.
I was, and only peeked at the code with
a disassembler, and patched a few
things. Then I decided to tackle a total
keyboard reconfiguration, and was

8 Lifelines, April 1982

I found this ability very useful in
assembler programming. For example
in a program I had typed:

CPI 'C'
JZ CANCEL

and then wanted to add:

CPI 'S'
JZ SEND

This is a trivial example, but I tagged
the front of the line containing the first
CPI then went past the JZ line and
typed the "wipe region" command.
Then I pressed the "yank killed" key to
bring it back and pressed it again to
bring it back a second time. If I had
wanted to have, say, ten CPI/JZ in-
structions, I could have just hit the
Yank key 10 times (or using the repeat
key: repeat 1 0 yank i.e. 4 key-strokes
to bring in 10 copies!)

COMMAND STRINGS. Simply
non-existent in MINCE as I mentioned
in NOTE above.

editors in this review do. Being used to
editors with such command strings, I
consider that a shortcoming. Anyone
not familiar with command strings
(such as in CP/M's ED) would not miss
it. Commands which are absolutely
necessary in any editor, such as "find
and change", are available, and in-
voked by command keys which then
prompt for arguments.

Here is an example of a typical use of
commands for an editor which has
commands: I had a file of about 2500
file names (my MAST. CAT) and
wanted to delete all .BAK names from
it. In an editor with a command mode I
could search for each occurrence of
.BAK then go to the front of the line
and kill the line, all by typing one com-
mand string.

MOVE/DELETE/INSERT/TYPE.
These do not apply to command mode
since they are implemented in full
screen mode.

REPEAT. WordMaster introduced
me to the idea of a repeat key in an
editor, much as a child might be in-
troduced to eating out by going to
MacDonald's. MINCE's repeat key is
more like a fine out-of-the-way French
Restaurant that you take that special
someone to. Like WordMaster, press-
ing it once causes the next key to repeat
four times. It may repeat itself, each
time multiplying by four, allowing up
to 16384 repeats.

The real charm of MINCE's repeat key
is the ability to handle an arbitrary
repeat count. Once you have pressed
the repeat key, you may take the de-
fault of four, or press any numeric keys
to override it. Want a line of seven
dashes? Just press: repeat, 7, -, and you
get: ------. I feel this is simply superb
and should establish a standard for
every editor to follow.

TEXT EDITING ABILITIES. MINCE
has more of a text editing flavor than
any of the other editors I reviewed. It
has a fill mode, which wraps a word to
the next line when you pass the right
margin while keying in. I'm using it
right now to write this article. It does
not diddle with special control char-
acters in the file; for instance, it doesn't
turn on the high bit of ASCII characters
like WordStar or PMATE do. Instead it
defines a paragraph as being delimited
by two consecutive carriage returns, or
a carriage return followed by a tab.

Caution: If you have a document
which does not meet MINCE's criteria
for paragraphs (for instance with just a
five-space indent) typing ESC-Q to re-
form the current paragraph will instead
lump the entire document into one
huge paragraph. When it goes away for
a long time to do so, you will find it is
un-interruptible. (ugh!)

In general MINCE is a good text editor
with document, paragraph, word, and
character-based commands, word-
wrap, and page mode. It can reformat
paragraphs but not justify them. It does
not have any ability to send data to a
printer. A separate text processor,
Scribble, is available. I am not familiar
with it but I presume it to be very good,
considering the quality of MINCE.

Command-Related Criteria

NOTE: MINCE does not have com-
mand strings in the sense that the other

Lifelines, Volume II, Number 11

FIND. Both forward and reverse
searches are supported. A control se-
quence causes a "Forward Search
<ESC>" or "Reve r se Search
<ESC>" prompt. You key in the
string and press ESC. To find the next
occurrence, specify just ESC as the
string.

CHANGE. Two forms of change are
supported. One defaults to replacing
all occurrences, but may take an argu-
ment for the number of changes to
make, and one is a "query replace".
The latter stops at each possible change
and awaits one of several characters to
either skip to the next occurrence,
replace, quit, or finish doing all the rest
without stopping to ask.

MULTIPLE EDITS. MINCE is very
comfortable edit ing several files
without returning to the CP/M com-
mand prompt. When you are finished
editing one file and want to start with
another, just save the first file and
create a new buffer (control-X B then
give a name). Then kill the old buffer so
there is room in the swap file (an un-
necessary step when editing small
files). After that, read in the next file to
edit. Alternatively, after a file is saved,
control-X control-R will read a new
file, replacing the previously saved
contents of the buffer.

You can also edit several files at once. A
quote from my tape recorder which I
used while preparing this review:
"After about two weeks, it is very easy
to get used to the MINCE capability of
editing three files at once. You find it is
really quite natural, and you start to
wonder how you got along without it."
At times I would have a comment on
the recorder about PMATE then one
on MINCE then one on VEDIT. Using
MINCE, I edited three notes files at
once - one for MINCE one for PMATE
and one for VEDIT. I could switch
from one to the other quite easily.

As I am typing this, I am using the split-
screen ability of MINCE with six lines
of my notes file at the top of the screen

(continued next page)

MOVE and COPY. These are imple-
mented in an almost ideal way: by
marking one end of the block to be
moved or copied, then going to the
other end and issuing a command to
either move or copy the the marked
section to the kill buffer. You then move
elsewhere and re-insert it. It may be re-
inserted multiple times. Although the
marked block is invisible, pressing
control-X twice swaps the current cur-
sor point with the place previously
marked, thus somewhat outlining the
marked block.

and 14 lines of this review on the bot-
tom. NICE! It is also useful for compar-
ing two files, say .ASM files, or for
picking pieces out of one file and put-
ting them in the other.

Another example: I had some docu-
mentation I was working on. First I
wrote the overview. Then in writing
the detailed documentation, I split the
screen with a few lines of the overview
at the top forming an outline, and used
the rest of the bottom of the screen for
keying in the details. Before having
MINCE, I would have had to use a
printed copy of the overview - but
what fun is that?

MINCE. 64K is recommended.

Room For Improvements

MINCE effectively implemented a
quite complete subset of EMACS. A
couple features that weren't imple-
mented, but which would be nice to
have, are:

(1) the ability to insert a second file
into the file being edited;

(2) support of numbered buffers like
EMACS with MINCE's naming fea-
ture; it is easier to type a single digit
number than to remember the full
exact buffer name, when switching
buffers.

(3) When you're editing a new buffer
MINCE should assume you want to
create a new buffer instead of asking
you.

(4) EMACS and its host operating
system allow escaping to the oper-
ating system to execute commands.
This is particularly nice during pro-
gram development when you might
wish to escape to the operating
system, do a compile, then return to
the editor to fix the mistakes the
compiler found. It is more practical
than with any other CP/M editor.

(5) Some commands are not inter-
ruptible. For example, a replace
ESC-R defaults to changing ALL oc-
currences of the string specified. If
you realize you forgot to give it an
argument of "one", you can't seem
to interrupt it.

The virtual memory swapping scheme
suffers a bit on floppies. There is no
solution to this other than perhaps a
hard disk, which makes the swapping
barely noticable. This problem is most
evident when editing a very large file.
The swap file must be somewhat bigger
than the file being edited. If the swap
file and the file being edited are on the
same disk and some distance apart you
may think you are running a "seek
test", not an editor. This is a price you
must expect to pay to gain the advan-
tages of such generalized multi-file
multi-edit capability.

The choice of keyboard characters was
d ic ta ted by fa i thfu l ly mimicking
EMACS. Thus such implementations
as control-V to scroll one screen down

WRITE . You can write out a block in-
directly, by moving it to another buffer,
then writing that buffer. Not as easy as
writing the marked block, but it does
the job.

NOTE on SAVE, READ, and WRITE:
When you use the READ or WRITE
ability of MINCE, the file name which
MINCE keeps track of changes. This is
something you have to watch out for.
Here is an example: I said MINCE
B:XYZ. ASM - a new file. Since it was a
new file, I wanted to bring in my
skeletal .ASM file of macros, equates,
and subroutines, which I frequently use
to help me get started on a program. To
do so, I typed in control-X control-R
which is the READ command, then
said EQU. LIB, the name of my equate
and subroutine library. Later, after
deleting about 80% of the skeletal code
and writing quite a few new lines of
code, I did a control-X control-S
(SAVE) and found that because
EQU. LIB was the last file referenced,
my XYZ. ASM was ignored and the file
written to EQU.LIB. The READ com-
mand is treated more like a "which file
is it you want to edit" command. This is
well-documented but is a significant
pitfail for the unwary, which I certainly
am. In addition, it won't work except
on an empty buffer which I had when I
edited a new file. Apparently, you
should bring the file into another buf-
fer, then bring pieces of it over as you
need them. A better alternative is to
copy the skeletal program BEFORE ex-
ecuting MINCE: PIP XYZ.ASM =
EQU.LIB then MINCE XYZ.ASM.

DIRECTORY. MINCE does not
have a way to get a directory listing
into the file.

I'm not sure if I have enough knowl-
edge, or if MINCE has enough ex-
pansion room, but some day I would
like to ADD the directory function to
MINCE. (The fixed location of the
MINCE global variables limit how
much code you may add to it).

Statistics

File Related Criteria

BACKUP. Simply non-existent in
MINCE. When I first worked with
MINCE I considered the lack of back-
ups a dreadful shortcoming. Perhaps I
had been spoiled by ED and Word-
Master and such editors that auto-
matically create a backup for you.

I have now learned to live without
them but force myself to maintain my
own backups with PIP. I do not like liv-
ing without automatic backups but do
not consider it a show-stopper.

If you have limited editing space you
will appreciate the ability to edit

; without a backup. However, you must
consider the space taken by the swap

r file.
•f

SAVE. You can easily save the file
you are editing with a two-keystroke
command.

QUIT. You can kill a buffer, thereby
discarding the edit, or you can quit
back to CP/M. In either case, if you
have made changes, MINCE cautions
you with a question such as “Abandon
Modified Buffers?".

READ. To insert a file from disk into
the one you are editing, you must
switch buffers, read the file, mark and
delete the buffer, then switch buffers
back and bring in the other buffer. I
know of one "big system" implementa-
tion of EMACS that supports inserting
a file directly into the current position
in the buffer.

MINCE retails for $175. By now, all the
dealers should be handling version 2.6
or later as that is the version with the
s ign i f i can t speed improvemen t .
MINCE.COM takes 30K of memory. It
also takes a swapping file whose size is
dependent upon how you plan to use

Lifelines, April 198210

scheme is happier if you throw away
stuff which you don't really need"; (3)
"You don't understand buffers yet, and
just want to do something simple". I
guess they're right, especially on that
last point! The more I use MINCE, the
more natural it becomes.
Regarding the control-V and ESC-V for
scrolling: "We will be changing
[ESC]-V to Control-Z soon."

Regarding documents which have
5-space indents: "...can be solved by
using a tab instead of five spaces for a
new paragraph."

In summary, they said "All that stuff
above is minor, and much of it based
upon a difference of opinion on how
the universe should 'really work'".
Right! I "grew up" in a "WordMaster
universe", and tend to measure others
by it, right or wrong.

They also sent a product announce-
ment for "the Final Word", a complete-
ly new editor and formatter. "It will in-
clude a keyboard configuration pro-
gram so that you don't have to hack C
code, directory access, more modes
with extra memory space, user com-
mand macros, and a buffer state-save
option that lets you come back to
editing whatever you were working on
whenever you like! An MS-DOS ver-
sion will hit the market soon after the
initial introduction."

preciate this quick solution. Also the
ability to capitalize words or make
them entirely lower or upper case is
nice. These features are more text-
oriented, but find use in C program-
ming where case is used to distinguish
between global variables, defined sym-
bols, local variables, etc.

If you have a need for multi-file, split-
screen editing (as I do in reviewing
CPMUG material and preparing ab-
stracts) or if you are a strong BDS C fan
and would like an editor which has
much of the source supplied to dink
with, then MINCE is for you. Also,
those who have access to EMACS or an
EMACS-like editor at work will cer-
tainly enjoy the familiarity of MINCE.
Others whose editing tends more to
text but not word processing, and who
don't know of or feel they need a com-
mand language, will like it. With the
addition of the Scribble text processing
package it should make quite a for-
midable combination.

and ESC-V to scroll one screen up,
while not comfortable, are properly
done. The ability to configure MINCE
using BDS C eliminates this as a real
problem.

The lack of a true "macro" command
language means that there will likely be
tasks for which you would like another
editor. CP /M's ED or a low-cost full
screen editor such as WordMaster or
VEDIT would serve the purpose. It
would be nice, of course, to have the
power of MINCE and command
strings. However with the .COM file
already at 30K it would become un-
wieldy, or require overlays.

The paragraph-fill command tosses
redundant spaces making typogra-
phically correct "period space space"
into incorrect "period space".

Recommendations

There are several things I at first would
have liked changed. The addition of a
".BAK "capability would have been
helpful, and I would have preferred
MINCE not to rename the file when
you read another file. However, the
longer I use MINCE, the more comfor-
table I become with these. So, the only
changes I would really like to see are:

(1) support for scrolling a line at a time;
and
(2) modification of the feature which
shows up the percent at the bottom of
the screen. It is updated every
keystroke - a bit annoying.

Conclusions

Support

Support from Mark of the Unicorn is so
good that I added this paragraph to the
review. They responded to my letter,
and provide a dial-in number for assis-
tance. They even helped a user (Joseph
Freda) by customizing a version for his
IBM 3101 display, to use its special
function keys. In his words ". . .Mark of
the Unicorn went beyond the call of du-
ty in the matter of cooperation". Their
replies to my review reflect a sincere in-
terest in the quality of their product.

Comments From Mark Of
The Unicorn

I sent an early rough draft of this
review to Mark of the Unicorn. Here
are some of the points they made:

Regarding my displeasure with MINCE
renaming the buffer after reading a file
into it: "Consider, however, if you were
using just one buffer, read in a file,
edited it, then wrote it back out. Then,
read in another file, edit it, then C-X
C-S [save it] and you've bashed the first
file you were editing."

They further commented: (1) "Perhaps
the modifications are really sequential
operations the way you think about
them"; (2) "The virtual memory

Next month yet another editor -
PMATE. It is so powerful it is almost as
much a programming language as an
editor. Another month, a VEDIT re-
view. Then, a little surprise: a $35
CP/M Full Screen editor. While
somewhat more limited than the other
editors, it is very usable, and imple-
ments configurability nicer than any of
the "big" editors.

I also received favorable comments
from John Dye, about Software De-
velopment and Training's "ED-80", and
will be looking into that.

When all the individual editors have
been reviewed, I'll present a wrapup
review comparing the editors to each
other.

As usual, I solicit your comments to me
% Lifelines/ The Software Magazine,
1651 Third Ave., N.Y., N.Y. 10028.

MINCE set out to do a task: to bring
the power of a large system editor
EMACS down to a microcomputer
scale. That goal was very nicely ac-
complished. I'm sure this will put the
pressure on the authors of other editors
(such as PMATE) to add split screen
features.

MINCE is an interesting, enjoyable
editor. In a delightful way it is very dif-
ferent from the others in this series of
reviews. There are many things I
haven't mentioned which help create
this image. For instance control-T
transposes the last two letters you
typed. If you frequently get these
transposition "finger checks" you'll ap-

Lifelines, Volume II, Number 11 11

Features

Custom Enhancements
To WordStar

Robert Van Natta
lustrates my belief that a theoretical justification for a given
patch should be presented first, not only to help the ulcer con-
dition often associated with patch installation, but also to
give the reader the chance to use his own inventiveness to ap-
ply this concept to other versions of WordStar. So this con-
cept can be applied to enhancing the installation of WordStar
on any terminal which has unused special function keys.

WordStar (WS.COM) contains a keystroke dispatch table.
In layman's terms, this table sifts every keystroke entered and
directs it to the address of the appropriate control function.
Keystrokes which are not recognized by the table are ignored,
or, where appropriate, are accepted as text to be entered in
the file. This is why nothing happens when you push a key
that is not supported or is not on the list of known com-
mands. It also provides the theoretical basis for making those
'dummy' keys on your keyboard do something. You need
only add the key to the list of keys searched for and pair it
with the dispatch address of the function being emulated.

The table thoughtfully has blank space for 8 or 10 keys on the
end of it, just waiting for your additions. Sounds simple! But
wait! Where are the dispatch addresses? That's simple, too.
Just read the table, and mimic the address that follows your
favorite key. (More on that later.)

The next problem is to decide which functions you would like
to have your dummy keys perform. Three is an odd bunch
and you should give it some thought before doing it because
the patches become familiar; others who use the system will
cut off your DDT and maybe a few other things if you sneak
out in the night and change them. It is hard enough to run a
computer without some yo-yo rearranging the keyboard
from time to time, so I suggest you get it the way you want it
the first time.

Much has been written about WordStar from MicroPro In-
ternational and it has been highly praised for its versatility
and usefulness.

Rarely, however, have I seen information on how to squeeze
the last ounce of performance out of WordStar or to custom-
ize it otherwise to the user's personal preferences or tastes.
Although the following remarks are specifically written for a
Radio Shack Model II, the ideas are generally not unique to
that machine and may be applied to others.

Using Those Special Function Keys

There are seven keys on the Radio Shack keyboard which
could be described as 'Special Function' keys. On the right of
the keypad there are the two keys labeled 'Fl' and 'F2'. These
keys, as everyone but the rankest of novices knows by now,
generate TA and TB codes. There is no way, short of attack-
ing the innards of your keyboard with a pair of wire cutters,
to make these keys generate other than those codes; they,
therefore, present no opportunity for software patchers.
Likewise, the HOLD key generates a null, and, so far as this
writer can tell, cannot be implemented. To the left of the
keypad, however, are four keys with arrows on them. They
generate, from top to bottom, codes 1CH, 1DH, 1EH, and
1FH. The arrow down key (1FH) on the bottom is patched by
the WordStar INSTALL program to duplicate the DELETE or
RUBOUT function common on other terminals. The actual,
but unlabeled, RUBOUT key (7FH) is the rather obscure con-
trol dash (?-). It would thus be possible to patch the arrow
down key to some other function while retaining full control
of WordStar. This would compel the operator to use the
more inconvenient T- key for the delete left functions, which I
suspect would be unpopular.

This keyboard limitation leaves an odd set of three arrow
keys unsupported by WordStar. Patching WordStar to give
some direction to these arrows is an honorable goal and an ef-
fort will be made hereafter to document the procedure for do-
ing so.

These patches may be installed with either DDT or using the
WordStar patcher located in the back end of the INSTALL
program. The use of both is described in some detail on pages
27 and 28 of the January 1982 issue of Lifelines, so some
knowledge of these utilities is assumed here.

This writer has read a lot of patches consisting of a bunch of
numbers with no explanation of what is being done or why.
This bothers me greatly - I always expect explosions, smoke
and other unmentionable occurrences during patch installa-
tions. Some months ago, for example, I happened across a
patch (not in Lifelines) for simultaneously erasing the direc-
tories on all four of my drives in one easy operation. This il-

It was my conclusion after some thought that the most useful
and appropriate uses for the 3 keys would be the TQS, TQD
and TKD functions; although, frankly, the TQE function was
a close second to the TKD with the TQP not far behind. My
justification for this choice was based on the fact that the TQS
and TQD functions would not only be useful, in that a single
key would duplicate relatively awkward functions requiring
a three key sequence, but at the same time do something that
the key label suggested, i.e. move the cursor in the direction
indicated by the arrow. My choice of the TKD function for the
arrow up key was made only after some reflection, and was
done solely on frequency of use. In hindsight, it has been well
accepted by my office staff who daily use my computer
(coupled with a NEC printer for heavy duty word
processing).

Lifelines, April 198212

Make a note of the 3F, as this is needed to compute the SAVE
command that you will need later when the patches are com-
plete.

Now enter the command s0649. In response to this you
should get: '0649 00'. This means that the current value of ad-
dress 0649 is 00 and that if you enter something it will be
substituted for the 00. In this case you should enter '1C',
which will cause an advance to the next memory location.
Then you can [in sequence] type in the values listed above for
the patcher.

As you do this you will get a column of numbers like this:

How Are The Patches Installed?

In WordStar versions 2.xx and 3.00 the empty part of the
dispatch table will begin at label XTAB:, about 0649h in ver-
sion 3.00 and a few bytes lower in version 2.xx. For what it's
worth, version 1.00 doesn't respond to XTAB: and the begin-
ning patch address is 0551h.(See Note 1 at the end of the arti-
cle.) To use the patcher in INSTALL.COM, proceed through
the menu installation routines (this may either be a first time
installation of WSU.COM or a reinstallation) and reach the
patcher by answering 'N' to the question 'ARE THE
MODIFICATIONS TO WORDSTAR NOW COMPLETE?'

The first question will be:

LOCATION TO BE CHANGED(O = END): XTAB:

This will, in version 3.00, display address 0649h and advise
that the present value is 00 and invite you to enter a new
value. If the old value is not 00, a patch has already been
made to this table, possibly by the factory install routine (the
current Radio Shack routine doesn't, but if you are using this
idea and applying it to some other computer you might run
into this), and should not be overwritten. (Instead, advance
to the first zero byte and begin patching at that location.)

The addresses that follow should be thought of as being in
groups of four bytes each . The first will be the hex value of the
first key, and the second will be the hex value of the second
key where two key combinations are being used (or null for
single key commands); the third and fourth bytes will be the
dispatch address.

Succinctly stated, the three keys that I have described may be
enabled by patching the following values in this order, begin-
ning at XTAB: or address 0649H:

1C,00, Fl,63, ID, 00, D3,63, IE,00,02,02

If you are using the patcher in WordStar version 3.0, it will
automatically advance to the next address if you simply enter
a carriage return in response to the subsequent questions of
addresses to be changed.

As suggested above, DDT.COM is a reasonable alternative,
and unless you are scared silly of using it, this is a good time
to give its use consideration. DDT is about as user unfriendly
a program as I can imagine, but it gets the job done effectively
and rapidly. Its advantage is that you may modify an already
working version of WordStar without having to reinstall the
whole thing and can make the patch even if you can't
remember which disk you left your INSTALL program on.
Simply enter the command DDT WS.COM. Appropriate
drive references may be used, if necessary, and in due course
you will get the echo:

DDT VERS 2.2
NEXT PC
3F00 0100

0649 00 1C < SPECIAL KEY BEING IMPLEMENTED
064A 00 00 < EMPTY UNLESS TWO KEY COMBINATION
064B 00 Fl < TWO BYTE DISPATCH ADDRESS FOR

TQS FUNCTION

064C 00 63
064D 00 ID < SPECIAL KEY BEING IMPLEMENTED
064E 00 00
064F 00 D3 < TWO BYTE DISPATCH ADDRESS FOR

TQD FUNCTION

0650 00 63
0651 00 IE < SPECIAL KEY BEING IMPLEMENTED
0652 00 00
0653 00 02 < TWO BYTE DISPATCH ADDRESS FOR

TKD FUNCTION

0654 00 02
0655 00 . < TERMINATE SEQUENCE WITH PERIOD-tc < HIT THE BREAK KEY AFTER YOU ENTER THE

PERIOD TO EXIT DDT.

Once you have exited DDT with the break key or a gO you
are ready for the SAVE command. The DDT Users Guide
says the correct way of executing the SAVE command is to
SAVE using the high order byte of the top load address and
converting it to decimal. (See manual page 2). Stated plain-
ly, you must convert the first two digits of the first number
that displayed when you loaded DDT to a decimal number
and use it in the SAVE command. This is why you were told
to write the '3F' down somewhere. If you are a math whiz
you can convert this mathematically to a decimal based
number but there is an easier way.

In the very back of your Radio Shack Owner's Manual is an
appendix which nicely lists out the various hex values and
their decimal equivalent. (I mention this because it is the
only useful item I have ever found in this document.) Read
down the table and you will find that the equivalent is 63.
Accordingly, enter SAVE 63 WS.COM to write your
patched version of WordStar back to the default disk. You
may use a drive reference to place the program on another
drive (such as SAVE 63 B:WS.COM). If you save onto the
same drive as you loaded off of, you will overwrite your
original file. You may avoid this by saving on a different
drive or under a different name. (See January 1982 Lifelines
for the problem and solution if you want to permanently
assign a different name to your new version.)

You are now ready to test your patch. Run your revised ver-
sion of WordStar in the normal fashion. Edit a file you don't

(continued next page)
13Lifelines, Volume II, Number 11

value and hit the arrow keys. The Left arrow should move
the cursor to the left edge of the screen, the Right arrow to the
right end of the text, and the up arrow will save and exit to
menu; and, of course, the traditional TQS, TQD, and TKD
will still work as they always did. But once you get used to
these new enhancements you will never use them again.

But I Want The Keys To Do Something Else!

If you have an earlier version of WordStar, or don't like my
choice of commands for the unused keys, all is not lost. You
need only jump through one more hoop. You must learn to
look up your own dispatch addresses. Do this by reading the
dispatch table yourself. Once again load WS.COM with
DDT and display using the DDT 'd' command the contents
beginning at about 04Al.Do this by entering dO4Al after the

This will display about half a screen of table. The memory
contents will be displayed 16 bytes wide with the address of
every 16th byte in the left hand column. If you don't see what
you are looking for the first time, you can display more by
simply entering the letter 'd' again for another 12 lines. Read
the table just like you would read a book, i.e. from left to
right. You will see two bytes for a key combination and two
bytes for an address, alternating clear down to location 0649
where you will find about three lines of empty space. There is
no easy way to figure out which are addresses and which are
key codes, but a little imagination is very helpful. Most of the
empty bytes are places for the second key in single key com-
mands. Thus, if you see a sequence where every third byte is
null, as in the patch suggested above, you can tentatively

conclude that the empty byte is the second byte of the key
pair. Secondly, look for repetition. All the TQ commands
are, for example, bunched together. So when you find a se-
quence in which every 3rd byte is 11, you can pretty well be
sure you are looking at the TQ portion of the table. So when
you read down to about 04B1, you will find the sequence 'll
13 Fl 63 11 04 D3 63'. Get the message?

If you still don't, here is one more chance. The ASCII values
of 11,13, and 04 are TQ,TS and TD respectively. Suffice it to
say that if you decide to get hyperactive in this area with your
patcher, you can actually change the entire WordStar com-
mand structure (probably for the worse).

In summary, to implement unused keys on your keyboard in
a redundant fashion do the following:
1) locate the dispatch address for the desired function in the

dispatch table;
2) locate the end of the dispatch table;
3) patch the keyboard value of the unused key followed by

an empty byte (if creating a one key combination) follow-
ed by the the dispatch address.

4) If implementing several keys, repeat routine as necessary.
5) Do not overwrite anything or attempt to patch beyond

the end of reserved blank space at the end of the table.

Notes

1. The dispatch addresses given are also for version 3.00 and
are different in each version. Lookup procedures are
described infra.

nm 1 1 n 1 1 1 1 i i 1 1 i 1 11 11 ijj

MAYBE I SHOULD
Go CHECK OM THEM

|\/uJJ(CowiP»*T HURT

GOSH, THIS COMPUTER SURE IS
TAKING IT'S T IME. / a—

I f SLOWS VOVMN
UK£ THIS WHZfl

THE GRAPHICS LAB
RUMS pARTICULARly

COMPLICATED
PROGRAMS jnf

YEAH.

GRAPHIC
LAJ<

1 MUMBLESv. _ _ ___ C

.MooT-
•f*

K
IB

IT
S

Lifelines, April 1982
14

Features

A Lisp Computing Environment
Harry Tennant, Ph.D.

In order for these mechanisms to work,
one not only needs to maintain a con-
text of what is being talked about, but
also when it was mentioned in the
dialogue. The flow of the dialogue
itself, the sequence of utterances,
becomes part of the context.

In The Stiff Upper Lisp a history is
maintained of the utterances from both
the user and the system. The user is
prompted by one of eight numbered
prompts (*1, *2, ... *7, *0). Thesystem
stores the user's command expression
with the prompt (the value of the
variable *1 becomes whatever expres-
sion the user typed in when prompted
by *1). Also, after the user's expression
has been evaluated, the value returned
by the system is stored with a cor-
responding variable (= 1, =2, .. =7,
= 0). Thus, the history maintains the
context of the most recent portion of
the dialogue.

For example, as pictured in Figure 1,
the user types in the expression (setq
my-variable howdy). This expression
sets the value of the variable MY-
VARIABLE to HOWDY. It then
returns the value HOWDY. When the
user types in an expression, the prompt
variable, *3, automatically gets set to
(SETQ MY-VARIABLE (QUOTE
HOWDY)). (Notice that howdy is a
sho r thand expression of (quote
howdy)). The variable =3 is set to the
value of the expression, HOWDY.

The dialogue history can be used by
any user-defined function, since *1,
= 1, *2, =2, etc. are just ordinary
global variables. However, there is a
function provided with The Stiff Upper
Lisp, REDO, which is made for
dialogue history related operations.
Simply typing (REDO) will cause the
last expression to be redone. Typing
(REDO *2 thru *5) or just (REDO 2
thru 5) will cause the sequence of com-
mands prompted by *2, *3, *4 and *5
to be redone.

One of the useful applications of REDO
and the dialogue history is in correcting

(continued next page)
15

engineered to include many of the
most appealing features of the Lisps
used in artificial intelligence research,
and yet it is small enough to allow the
user sufficient room in which to com-
pute.

The environment of an organism, ac-
cording to Webster, is the "complex of
factors that act upon an organism and
ultimately determine its survival and
form". The computing environment
of a user could likewise be defined as
the complex of factors that acts upon
the user, determining productivity
and the form and extent of computa-
tions. As this definition suggests, the
environment is the combined effect of
a collection of factors. The environ-
ment determines the user's productiv-
ity by making the facilities easy or
hard to learn and by providing the
user with the functionality to make
tasks easy or hard to complete. As a
result, the environment determines
what will ultimately get done. Users
have a limited amount of effort to ex-
pend on their tasks. If the environ-
ment is too limiting, ambitious pro-
jects will not even be attempted. At-
tention to detail tends to increase as it
becomes easier to accomplish the
more basic tasks.

A great deal of attention has been
given to developing good computing
environments for Lisp programmers.
This is due, at least in part, to the fact
that it is generally easier to improve
the programming environments in
Lisp than in other languages (since
programs can be manipulated as data
in Lisp - see appendix). It is also due in
part to the fact that Lisp program-
mers, usually working on enormous
experimental artificial intelligence
programs, have had a more urgent
need for congenial programming en-
vironments. This article will describe
the computing environment designed
for users of The Stiff Upper Lisp. We
will discuss some of the factors that in-
fluence the users and what has been
done about them in The Stiff Upper
Lisp.

The Stiff Upper Lisp is a dialect of Lisp
that runs under CP/M (the CP/M ver-
sion is available from Lifeboat Associ-
ates) and TRSDOS (the TRSDOS ver-
sion is available from Tennant and
Tennant Computing). It has been

Lifelines, Volume II, Number 11

Dialogues

When a user is interacting with a com-
puter, the two are involved in a
dialogue. The key difference between a
dialogue and an arbitrary collection of
utterances is that there is coherence to a
dialogue. A context is established, and
there is structure to what the two par-
ticipants say and when they say it.
Human dialogues are characterized by
very detailed contexts. In contrast,
computer systems typically don't
maintain any context.

Lisp is an interpretive language which
provides an environment for the user.
When programming in Lisp, the user is
"in" Lisp. The same is true for BASIC
and APL. These interpreted languages
provide a workspace for the user.
Within the workspace the user may
define and test functions one at a time
and set global variables. As the
dialogue continues, the changing col-
lection of programs, variables and
values indicate what has transpired in
the dialogue: it is part of the context.

Dialogue History

Coherence is maintained in human
dialogues through repeatedly referring
to the same concepts. Some specialized
mechanisms have been developed to
make repeated references easier. Some
of them are:

Pronouns he, she, it, they,
them, etc.

Definite
Noun phrases the ball, those idiots,

these ideas
Ellipsis What is the square

root of 2? Of 5?

minor typing errors in commands. If a
user types "pirnt" instead of 'print", as
in,

*3 (pirnt liowdy)
Unknown Function Name: PIRNT
*4 (redo using print for pirnt)

the user can now type (REDO using
print for pirnt). The substitution of
print is made for pirnt, and the expres-
sion is evaluated again. In this exam-
ple, of course, it would have been
easier to just type in (print 'howdy), but
had the original been a ten line expres-
sion, the user would be extremely
grateful for the simple REDO substitu-
tion.

If a more serious error occurs in a long
expression, the user may enter the
editor, edit the expression, then redo
the edited version.

The REDO facility is also useful for
developing and debugging the body of
a loop, prior to putting the body into a
loop construct. The user can work on
perfecting a loop body then give a com-
mand like (REDO 2 thru 5 50 times) or
(REDO 2 thru 5 until (equal flag-var
stop)).

The dialogue history is maintained
automatically at the top level. It is done
by Lisp calling the function TOPLEVEL
which assigns the input to the prompt
variable (*1, *2, ...) evaluates the in-
put, then assigns the output to the cor-
responding output variable (= 1, =2,
...) (incidentally, the variables ** and
* ** are also assigned the last input and
the last value of ** respectively). The
function TOPLEVEL is available to the
programmer making it easy to put the
same interface into the programs he or
she writes. This serves to make the
human interface consistent.

forget the syntax. Then it is necessary
to digress to check the manual, then
perform the computation.

The Stiff Upper Lisp provides a facility
for digressions. The facility is splicing
readmacros. As the Lisp-reader is
reading in an expression, if it comes
across a readmacro, the readmacro (a
function), is evaluated immediately.
Readmacros can perform arbitrary
computations, so they are equivalent
to interrupting the current read opera-
tion with another process. If the splic-
ing readmacro returns NIL (which is
easy to arrange), the readmacro will
leave no trace behind in the input
stream. The interrupted read operation
will then be continued as if the inter-
rupting readmacro had not been there.
This interrupt capability is extremely
useful.

In the example shown in Figure 2, read-
macros have been used four times.
First, the ;E readmacro allows the user
to enter algebraic expressions in
familiar algebraic form. The code of
the readmacro converts it to the
somewhat clumsier Lisp form, then in-
serts that generated Lisp code into the
input stream. The next two are uses of
the ;@ (called DO IT!) readmacro,
which allows the user to digress from
the task to do something else, then pick
up where he or she left off. DO IT!
reads the next expression in the input
stream, and evaluates it, but leaves no
trace in the input stream. Thus, the user
can digress to examine the on-line help
or set a global variable without disrupt-
ing the primary task of typing in the
LOOP statement. In the example in
Figure 2, the user uses the DO IT! read-
macro to use the on-line help facility
and to set the value of a variable that
should have been set before writing the
LOOP expression. The fourth read-
macro, is the comment readmacro.
It reads to the end of the current line
(the comment), but leaves nothing in
the input stream.

Ignoring Details

Garbage Collection

The Stiff Upper Lisp provides for some
needs that most other languages do
not. First, it provides dynamic memory
management. When all the Lisp cells
are exhausted, the garbage collector is
invoked to search the memory for cells
which were used temporarily but are
not currently in use. These are "gar-
bage" cells. The garbage collector then
collects these cells and makes them
available for future use: it recycles the
garbage. In large programs (i.e., large
enough to fill the programmable
memory of the computer), memory
allocation tends to become one of the
most constant and troublesome con-
cerns for the programmer.

In the Stiff Upper Lisp, the user need
not be concerned with dynamic
memory allocation because Lisp does it
for the user.

Position Independence

When programming in BASIC, one fre-
quently faces the limitations of line
numbers. In the midst of editing, one
must stop to renumber, then find ones
place and continue editing. Stopping to
renumber is not an oppressive burden,
but it is an interruption that hinders
rather than helps the programming
process. It adds some mental overhead
and another opportunity to forget
what one is doing. Programmers don't
need that.

In Lisp, programs are position indepen-
dent. The memory is (mostly) compos-
ed of a large workspace. Programs and
data can reside anywhere within the
workspace. As a result, any combina-
tion of programs and data can coexist
in the workspace (as long as there are
no name conflicts).

Pos i t ion independence not only
facilitates editing, but also promotes
the development of program libraries.
The fewer familiar algorithms the user
must reimplement, the more time can
be devoted to solving the problem.
Think of what a disadvantage it would
be if every time one wanted to write a
program that multiplied two numbers,
one had to write a multiplication
routine. High level languages an-
ticipate a variety of user needs (such as
mathematical functions) and provide
them. Many more could be provided,
but aren't.

Digressions

Another feature of human dialogues is
that they do not always proceed
smoothly. A speaker may start, then
digress, then return to the original
point. In interactive programming the
same thing happens frequently, espe-
cially when writing loops. Program-
mers very frequently will begin work
on the body of a loop, then have to go
back to initialize a variable before the
loop can be executed. Another com-
mon interrupt is that a user will get
deep into writing an expression and

In programming, it's the little things
that count. A programmer will ap-
proach a problem with a limited
amount of time and a limited amount
of energy. The small frustrations the
programmer encounters consume time
and waste energy. Reinventing fre-
quently used utility functions is un-
productive and monotonous.

Lifelines, April 198216

In BASIC, by contrast, one could not
redefine the IF-THEN-ELSE, PRINT or
FOR-NEXT. In Lisp, nothing is sacred.

This level of extensibility enables the
user to make the environment do just
what he or she would like it to do. It can
be thoroughly customized, down to the
level of changing the language itself, if
that is desired.

The Stiff Upper Lisp supports custom-
ization and personalization by reading
an initialization file. When the user
enters the system, an initialization file
is read. The file can contain definitions
of the functions and data values the
user wants his or her environment to
include. By automatically reading the
initialization file, the system can
always appear just as the user wants it
without any further effort on the user's
part.

Autoloading

Lisp provides a trace package, which
shows when each traced function was
entered and exited, what the parameter
values were when called and what the
return value is. The break package
allows the user to stop computation at
a selected point, and allows the ex-
amination of the current stack of
expressions being evaluated, the cur-
rent values of any variables (either
global variables or local variables) and
the variable binding stack. The user has
the full power of the Lisp top level
available, so is free to perform
whatever computation he or she likes
(including redefining the very function
that caused the break!). Finally, the
single step facility allows the user to
step through computations one expres-
sion at a time. This is particularly
useful in locating catastrophic bugs.
The course of the computation can be
monitored up to the point where the
bug occurs.

If a bug takes a long time to fix, it is
probably because the programmer is
trying to fix the wrong piece of code.
Once the code that actually holds a bug
is pinpointed, repairs are usually trivial
and quick. Finding bugs is therefore the
key to debugging. The tools provided
in The Stiff Upper Lisp provide enough
control over the computation and
enough insight into the dynamic state
of computation to make it much easier
to locate bugs.

The Stiff Upper Lisp also provides an
editor that "knows about" the structure
of list structures. The user can use this
structure editor while in the Lisp en-
vironment. It is not necessary to leave
the environment to edit a function,
then read it back in (although the user
can do this if he or she prefers). (See
Figure 3.)

Since programs can live together in the
Lisp workspace, one can put frequently
useful programs into a library, then
reuse them instead of rewriting them
when needed. BASIC prevents effec-
tive and convenient use of software
libraries because of line number con-
flicts.

Output Control

Another common but needless annoy-
ance occurs when a display of informa-
tion goes scrolling off the top of the
screen before it can be read. The Stiff
Upper Lisp keeps a count of the number
of lines that have been sent to the
screen. When the screen is full, it stops
the display, types "more. . and awaits
action from the user. The user may
allow the display to continue on to the
next page, or terminate it and return to
the top level of Lisp. The system also
keeps track of the number of characters
printed so far on the current line.
Before printing each word or number,
the system checks whether there is
room on the current line to print it. If
there is, it is printed. If not, the system
goes to the next line to avoid splitting
words or numbers across line boun-
daries.

Finally, The Stiff Upper Lisp provides a
pretty-printer. The pretty-printer
displays programs and data in a format
that shows their structure, making
them much more readable. Instead of
printing,

(lambda ($exp) (cond ((atom $exp)
$exp) (t (cons (cdr $exp) (car $exp))))

the pretty-printer prints a much more
readable form, making the structure
(or, more importantly, errors in the
structure) obvious.

(lambda ($exp)
(cond ((atom $exp) $exp)

(t (cons (cdr $exp) (car $exp))))

Debugging Facilities

The most limited resource in contem-
porary small computers is memory
space. It cannot be squandered. There
is thus a tension between the desire to
include extensive functionality and the
need not to fill up memory with infre-
quently used (although useful) func-
tions. The answer is autoloading. In-
stead of actually putting the function
definitions into the Lisp workspace,
surrogate function definitions are put
there. When the function is called, the
surrogate definition is evaluated. The
surrogate loads the real definition into
the workspace from disk, then the real
definition is evaluated. (See Figure 4.)

Final Remarks

The quality of interactive computing
environments has gradually improved
over the years, especially in the Lisp
community. More has been learned
about what would be useful to include
in the environment.

The extensibility of the Lisp environ-
ment has allowed users to experiment
with new facilities, whereas in other
languages improvements must come
from the systems designers or main-
tainers, or not come at all.

In addition, Lisp users have been work-
ing interactively longer than other
users. They have simply amassed more
experience.

(continued next page)
17

Customization

One of the greatest advantages of Lisp
is its extensibility. Users can define
functions which, once defined, are in-
distinguishable from the functions that
came built in with the system (in Lisp,
all procedures are functions: they all
return a value). Lisp allows the user to
have his or her definitions of functions
replace those that the system came
with. If you don't like the way LOOP
works, for example, you may define
your own definition of LOOP, and
from then on, that will be the one used.

The process of programming will
always produce bugs. The Stiff Upper
Lisp, like most interactive languages,
provides facilities for identifying bugs
so they may be corrected. One advan-
tage that Lisp has over the other
languages is that it is better suited to the
symbol processing tasks that are re-
quired in debugging. The Stiff Upper

Lifelines, Volume II, Number 11

output the equivalent Lisp program.
Also, the DO IT! readmacro read in an
expression and caused it to be evalu-
ated immediately.

It is not unusual for an interactive
language to have an editor. An editor
is, of course, a program written to
manipulate programs. The Stiff Upper
Lisp has an editor, but BASIC has an
editor too. The difference is that in
Lisp, the editor can be written in Lisp
(and in The Stiff Upper Lisp it is). In
BASIC, the editor must be written in
the language that the BASIC inter-
preter is written in. Consequently, a
Lisp editor can be improved or rewrit-
ten, if one wishes to do so. In fact,
many Lisp users improve their editors,
adding pattern-matching search facil-
ities, program templates, improved
display facilities or whatever moves
them. In BASIC, the editor is im-
mutable. You are stuck with the same
editor after ten years of use that you
had on the first day. It is very likely
that what you would like out of your
editor would have changed con-
siderably over those ten years.

The final example of manipulating pro-
grams as data is in the implementation
of the TRACE and BREAK functions.
When one traces a function, as in (trace
fact) shown in the text, the trace func-
tion actually rewrites the definition of
the function. In this case, the function,
fact, is rewritten to first print out the
entry information, next evaluate the
body of the original function, then
print out the exit information. The UN-
TRACE function rewrites the function
again so it is back the way it started.
Once again, most implementations of
BASIC have some trace facilities. Like
the editor, though, the trace facilities
are not and cannot be written in
BASIC. They are immutable (and
generally insufficient). Trace facilities
in Lisp, however, are just like any other
program and may be rewritten by the
user to fit his or her own needs and
taste.

The ability to manipulate programs as
data does not simply allow one to have
an editor or a trace package or a break
package or a redo package. Any one of
these could have been built into any
language, including BASIC, if the
language designers had thought to do
it. The difference is that with Lisp, the
language designers don't have to think
of everything. The users can invent
facilities and integrate them into their

personal copies of the language just as
the language implementers can. This
gives Lisp a future. It can continue to
evolve after it is in the hands of the pro-
grammers. Evolution, enabled by giv-
ing programmers the ability to improve
their computing environments, is what
has made the Lisp computing en-
vironments far and away the most well
developed env i ronments of any
language.

Harry Tennant is the author of The Stiff
Upper Lisp.

The facilities described in this article
are included in The Stiff Upper Lisp.
Few, however, were invented for The
Stiff Upper Lisp. The Stiff Upper Lisp
has borrowed a small subset from the
tools collected into Interlisp, UCILisp
and Lisp Machine Lisp. These dialects
are very large, wholly impractical for
use on a computer with a small address
space and slow floppy disks. However,
these limitations are no excuse for mak-
ing computing environments as bleak
as they usually are. The computing en-
vironment provided with The Stiff Up-
per Lisp has been engineered to deliver
a congenial environment within the
constraints imposed by the limited
systems it resides on.

Appendix

A Call for
Manuscripts
Perhaps you've done some writing be-
fore. Or maybe you've always wanted
to write. It could be that reading
Lifelines/ The Software Magazine has
given you some ideas on what you
have to contribute. We're interested in
hearing what you have learned, and so
are other readers. Whatever serious
CP/M-80 compatible software you've
been using, we'd like you to write for
us. We like to publish both long essays
and those short gems which can hold so
much important information.

Send us a brief resume of your software
experience, and samples of your previ-
ous writing, if you have any. (Don't be
shy if you're not an experienced writer.)
Then we can talk about your work and
about payment for your efforts. Write
or call for our Writer's Guide: Editorial
Dept., Lifelines Publishing Corp., 1651
Third Ave., New York, N.Y. 10028.
Telephone: (212) 722-1700.

Programs are Data in Lisp

One of the most commonly cited ad-
vantages of Lisp is that programs can
be manipulated like data. One can con-
struct a list in a Lisp program, and if
that list is a sensible expression (such as
(setq my-variable (quote howdy))), the
expression can be evaluated.

In the ordinary course of program-
ming, one would not want to write pro-
grams that write other programs which
in turn get evaluated (and, who knows,
perhaps those write other programs
and . ..). Lisp makes it possible to do so,
but the programs written by program
writing programs are so horrendous to
debug that the advantages have to be
stupendous to justify the approach.
The ability to manipulate programs as
one would manipulate data is very
useful, however, for building congenial
computing environments.

There were many features in this article
for which the ability to manipulate pro-
grams as data was essential. First was
the history-keeping facility. Expres-
sions read in from the user's terminal
are set as the values of the prompt
variables. Few languages would allow

that. More significant, however, is the
way that the REDO function can cause
the history expressions to be reevalu-
ated on demand, particularly after
making changes (such as correcting a
spelling error).
Another example was seen in the
discussion of readmacros, the ;E read-
macro read in a data expression (the
algebraic expression), massaged it and

MAG
Announcement
Micro Applications Group has an-
nounced that it is changing the names
of its products as of March 1st. For
your reference, here is a list of the old
and new names:

New Old
MAG/sam3 MAGSAM III
MAG/sam4 MAGSAM IV
MAG/sam-E MAGSAM-E
MAG/sort-M MAGSORT-M
MAG/sort-C MAGSORT-C
MAG/sort-R MAGSORT-R
MAG/basel PRISM/LMS
MAG/base2 PRISM/IMS
MAG/base3 PRISM/ADS

18 Lifelines, April 1982

Figure 1

*3 (s e tq my-var iab le 'howdy) ;; *3 ge t s s e t to the

HOWDY

;; exp re s s ion the
; ; u se r typed in.
;; The exp re s s ion is
;; eva lua t ed , s e t t i ng
;; MY-VARIABLE to HOWDY.

*4

;; The sys t em a l so s e t s =3
;; to the r e tu rned va lue , HOWDY.
;; The va lues of *3 and =3 he lp
;; to e s t ab l i sh the con tex t
; ; of the cou r se of the d i a logue .
; ; The sys t em d i sp l ays the next
; ; p rompt , awai t ing input from
; ; the use r .

Figure 2

*2 (loop (p r in t ;E ((i ndex+ 82)*4))
;; The f i r s t r eadmacro , ;E, r eads
;; in the exp re s s ion tha t f o l l ows
;; and conver t s i t from the
; ; common a lgeb ra i c no t a t i on to
; ; Lisp syn t ax ,
; ; (t imes (p lu s index 82) 4) ,
; ; and i n se r t s the Lisp code
; ; i n to the input s t r eam.

(he lp l oop)
<help on the LOOP func t ion d i sp l ayed here>

; ; The DO IT! r eadmacro , reads
; ; the next exp re s s ion and eva lua tes
; ; i t immedia te ly . In th is ca se , i t
; ; is a c a l l to the on- l ine
; ; he lp sys t em to get a
; ; reminder on the syn tax of LOOP.

ex i t ((equa l index 100) ' f i n i shed)
(se tq index (add l i ndex)) (s e tq index 0))

; ; Here the DO IT! readmacro is used
; ; i n i t i a l i z e the va r iab le INDEX,
; ; which the use r f o rgo t to
; ; i n i t i a l i z e be fo re wr i t i ng the
; ; LOOP exp re s s ion .

Figure 3

*4 (de f ac t (n) (cond ((eq n 1) 1)
(t (* n (f ac t (sub l n))))))

;; Recurs ive ly de f ine
; ; f a c to r i a l .

FACT

*5 (f ac t 3)
6

(Figure 3 continued next page)
Lifelines, Volume II, Number 11 19

Figure 3 (continued)

*6 (t r ace f ac t) ;; Trace en t r i e s and ex i t s
;; for the func t ion f ac t ;

(FACT)

*7 (f ac t 3)
l en t e r : FACT(3)
! ! en t e r : FACT(2)
!! l en t e r : FACT(l)
! ! ! ex i t : 1
! ! ex i t : 2
’ . ex i t : 6
6

;; r e tu rns a l i s t of a l l
; ; cu r r en t ly t r aced func t ions .
;; Levels of embedding shown

;; g r aph ica l l y .

;; Ca l l i ng pa rame te r s and
;; r e tu rned va lues d i sp l ayed .

*0 (un t r ace f ac t)
NIL

;; Take f ac t off the t r ace l i s t .

*1 (s t ep t)
=T

;; Turn on s ing l e s t ep f ea tu re

*2 (f ac t 3)
:(FACT 3)

: : (C0ND ((EQ N 1) 1)
: : : (EQ N 1)

;; Forms inden ted by values
; ; i nden ted by =.

(T (* N (FACT (SUB1 N)))))
;; Step wa i t s fo r the use r a f t e r
; ; p r i n t i ng each fo rm:
;; <space> to con t inue ,
;; con t ro l -g to qu i t and
;; r e tu rn to the top l eve l ,
;; S to tu rn off the s t eppe r
;; and cont inue the
;; compu ta t i on ,
; ; P to p r e t t y -p r in t the
;; cu r ren t fo rm.

===NIL
: : : (* N (FACT (SUB1 N)))
: : : : (FACT (SUB1 N))
: : : : : (SUB1 N)
=====2
: : : : : (COND ((EQ N 1) 1) (T (* N (FACT (SUB1 N)))))
: : : : : : (EQ N 1)
======NIL
: : : : : : (* N (FACT (SUB1 N)))
: : : : : : : (FACT (SUB1 N))
: : : : : : : : (SUB1 N)
======== 1
: : : : : : : :(COND ((EQ N 1) 1) (T (* N (FACT (SUB1 N)))))
: : : : : : : : : (EQ N 1)
=========!
========1
======= 1
======2
=====2
====2
===6
==6
=6
6

Lifelines, April 198220

Figure 3 (continued)

*3 (s t ep n i l)
: (STEP NIL)
NIL

;; Turn off s t eppe r .

*4 (b reak f ac t) ;; I n i t i a l i z e f ac t fo r
; ; a b r eak .

(FACT) ;; Returns a l l cu r ren t
; ; b r eak func t ions .

*5 (f ac t 3)
Break fo r FACT
BREAK: s t ack ok qu i t r e tu rn eval Level= 1

;; A break has been en t e r ed ,
;; spec i a l op t ions are l i s t ed .

ok ;; Proceed through the break .
Break fo r FACT
BREAK: s t ack ok qu i t r e tu rn eval Level= 2

;; The next r ecurs ive ca l l of
; ; f a c t i s b roken .

n
2
BREAK: s t ack ok qu i t
(s e tq n 1)

;; D i sp l ay current value of n.

r e tu rn eval Level= 2
;; The fu l l power of THE STIFF
;; UPPER LISP is ava i lab le in
; ; a b r eak .

1 ;; This w i l l a l t e r the r e su l t
; ; (f ac t 3).

BREAK: s t ack ok qu i t
ok
3

re turn eval Level= 2
;; P roceed wi th the eva lua t ion ,
;; A l t e red answer because of
;; i n t e rven t ion in the break.

*4 (unbreak f ac t)
NIL

Figure 4

;; This is an au to loading
;; de f in i t i on of HELP. I t
; ; r e ads in the r ea l def i n i t i on ,
;; then evaluates t ha t .

(df he lp $key
(r ead f i l e help I sp)

; ; Read in the f i l e
;; HELP.LSP which conta ins
;; the fu l l de f in i t i on of
; ; t he func t ion HELP.

(app ly ' he lp $key))
;; Apply the func t ion HELP
;; to the same argument l i s t .
;; This t ime when APPLY looks
;; up the de f in i t i on of HELP,
;; i t w i l l f i nd the one read
; ; in f rom HELP.LSP.

21Lifelines, Volume II, Number 11

pinion
Zoso

those one sees only after parting com-
pany with a quarter. So, if you want to
turn your brain into cottage cheese in
the privacy of your home and save a
pocketful of coins in the process, the
Bally Arcade is highly recommended.

last product some of these guys would
like to see, then you've probably got it
figured out already. I'll be keeping you
posted.

Hello Dear Hearts,

In past columns I have tried to lighten
things up a bit (get it?) with some mini
travelogues, so very possibly some of
you who saw the postcard I sent in lieu
of a column last month were looking
forward to hearing about my recent
trip. Sorry! If you want to travel
vicariously, read National Geographic
instead. Through no special choice of
mine, here comes another computer
potpourri.

Another nifty software item looming
on the immediate horizon is 'BKG'. If
you own a cursor addressable terminal
and a Z80 CPU, you will be able to use
your computer as a tournament quality
backgammon opponent. Now I know
most of you are thinking, "Oh no, not
another backgammon game". This one
is different!!! It's light years ahead of
anything you've seen before. It features
a splendid screen presentation and
typically requires five seconds or less to
compute and display the machine's
move. The beta test version, which I
have enjoyed for hours on end, appears
as 28K of carefully hand optimized Z80
machine language. It will be sold with
an equally impressive version of
Gomoku. CP/M computer games have
arrived at last!!!

I don't know how many of you get as
bored as I do waiting for disk intensive
activities to complete; (editing,
assembling, compiling, linking and the
like). Even the best of floppy disk
systems are slow and there are lots of
very bad ones in the field right now.
The standard wisdom has dictated an
upgrade to hard disks, but when speed
is more important than storage, there is
a cheaper and faster way. For lack of a
better name, let's call it 'silicon disk'
technology. Essentially, a silicon disk is
several hundred kilobytes of memory,
implemented as a floppy disk. The idea
is to do all the [usually] slow stuff on a
silicon disk, while occasionally dump-
ing the results on a regular magnetic
disk just to play it safe.

Recently, several products incorpor-
ating the 'silicon disk' concept have
been introduced. At this point, the only
one I have seen in action is made by
dy-4 Systems of Ottawa. The Orion
system by dy-4 consists of impressively
rugged hardware driven by equally im-
pressive software. That's the good
news. The bad news is that dy-4 only
supports the STD bus. Whereas the
STD is a splendid eight bit bus, it is
hardly the most common.

I know this is the April issue, but I'd be
remiss in not mentioning something
which caught my eye a few weeks ago.
(I'm writing this some six weeks before
you'll see it).

The editorial in Infoworld's February
1st issue was essentially an unabashed
encomium on behalf of Minnie Floppy
(written, some suspect, by M.F.'s alter-
ego). This editorial hailed M.F. as the
first writer to bring whimsy and amus-
ing irreverence to a computer oriented
publication. What can I say, Minnie,
my lithe little punsmith? If Infoworld
claims that you originated the Solid
State Side Splitter, then I guess it must
be true. I'll just have to keep looking for
your columns which appeared prior to
June, '80 (the month I began here).
Please advise me, Minnie. I shall never
again find inner peace until I have been
richly amused by some of your for-
mative masterpieces.

For some time now, I've had this nag-
ging feeling that there was more than
coincidence behind the similar editorial
content of Time and Newsweek.
Roughly twenty weeks a year, the
cover stories of these magazines will
concern the same [often obscure] topic.
I like to think of it as America's answer
to Tass, Izvestia and Pravda, (that evil
Soviet troika, dedicated to distorting
and suppressing the news - or so we are
told). In a most unusual turn of events,
Time and Newsweek somehow fell out
of synch with their respective cover
stories about the microcomputer
revolution. {Time published their ver-
sion in the February 15 issue; News-
week did so a week later). The article in
Time was probably more informative
than nothing. I'm afraid I can't say as
much for the one in Newsweek.

What follows are some of the [ex-
purgated] things I muttered to myself
while reading various parts of that

I have consistently disdained low-end
hardware in this column. Perhaps the
term 'toy computers' will jog your
memories. That's all out the window
now. The Bally Arcade 'computer' is
actually kind of fun. Now don't get me
wrong, you wouldn't want to auto-
mate an office with this machine but
you can play some excellent video
games with it. Believe it or not, this unit
offers a wide variety of games which
are almost identical in quality with

In the software department, I know of a
nearly completed project which will
prove extremely popular with hob-
byists and others eager to explore the
inner workings of complex, highly pro-
prietary software. Make no mistake,
this item will cause lost sleep aplenty
amongst principals of some of the most
prolific software firms. I don't want to
let the cat out of the bag just yet, but if
you can conjure up an idea of the very

22 Lifelines, April 1982

uses a 'mouse' - a small hand-held
device to guide the computer's [cur-
sor] around the video monitor..."

Z: No, no, no! It's a 'turtle'. Here's an
easy way to keep things straight; the
turtle has a shell, the mouse is a
furry little rodent.

N: "In a famous experiment, MIT pro-
fessor Nicholas Negroponte drove
through Aspen, Colo., taking pic-
tures every five feet. The photo-
graphs were loaded on a video disk,
and viewers can simulate a drive
through Aspen."

Z: Why did he do that? Let's assume
the professor wanted to simulate a
drive anywhere. The first thing he'd
need would be a bogus steering
wheel and some dummy pedals. If,
on the other hand, he'd wanted a
visual representation of a drive
through Aspen, he could have got-
ten much more viewable results with
a roof mounted Super-8 camera.
Also, one doesn't 'load' things onto
video disks anymore than one loads
things onto phonograph records.
Both are 'read only' media. I sup-
pose one could use a video disk as a
table top or small hammock and
load things onto it, but I doubt if
that's what N: was trying to tell us.

Late breaking flash: (The following
morsel of reliable gossip is for your
edification only and has nothing to
do with Professor Negroponte's 'ex-
periment'). I have just found out
that a New York State based mega-
conglomerate is engaged in top
secret development of laser scanned
video disks which the user can also
'program' (by laser etching). The
possibilities for mass storage of pro-
grams and data are awesome. Any-
way, I chanced upon this news
scoop by getting one of this com-
panies research engineers sufficient-
ly drunk to divulge some of the de-
tails. As I don't want this resource to
dry up (my friend getting fired), I'm
not going to name the company he
works for. Suffice it to say that I've
always wondered why an outfit
which makes such great duplicating
machines had not yet gotten into the
computer business...

N:"...Estridge [of IBM] envisions us-
ing the computer to summon and
explore anything mankind can
record..."

(continued next page)
23

Z: Back to the fallout shelters!

N: ". . . Why does my CP/M card fail so
often?' asked one man in the crowd.
'I sent mine back to the factory,'
someone replied. They made some
mods, put in a new EPROM and
sent me a new book.' The questioner
wanted to know why his Control
Program for Microprocessors - soft-
ware that oversees a system's overall
operation failed. The man who
answered explained that Apple had
solved his similar problem by mak-
ing some modifications, changing a
chip and sending new instructions."

Z: There's nothing which impresses me
more than adroit translations from
spoken English to written English.
Here, however, the treat is spoiled
by a dearth of fact. To wit, the
'CP/M card' is Microsoft's 'Soft-
card'. It is not a product of Apple!
Some versions of Microsoft's CP/M
for the Apple prior to version 2.20B
had problems. The appropriate fix
involved updating a disk. In no case
are we discussing firmware CP/M
for the Apple. Some early produc-
tion samples of the 'Softcard' re-
quired a single faster buffer IC
and/or an extra capacitor to work
properly, again not EPROMS. In
fact, I have never seen the telltale
EPROM 'skylight' on any chip used
in the 'Softcard'. More importantly,
it's been quite some time since the
Softcard and accompanying soft-
ware have suffered from reliability
problems. Just for fun, I'd like to
meet the guy who sent his 'CP/M
card' back to Apple for a new
EPROM. On second thought, no! I
wouldn't like that at all!

For the record; I've written things
good and bad about Microsoft dur-
ing the last few years. In both cases,
I called things as I saw them. With
this in mind, here's a belated and
heartfelt compliment to Microsoft
for the 'Softcard'. This product
definitely established new standards
for excellence of concept, design,
documentation and packaging.

N: 'There is more software made [sic]
for the Apple than for any other
computer,..."

Z:Well I'm sure this will come as a
quite a shock to DECUS and a few
comparable outfits.

N: [about the Xerox Star] "... the Star

Newsweek art icle. We'll use the
familiar notation (N: = Newsweek and
Z:=me).

N: "...software, the vital instruction
menus that tell the computer what to
do."

Z:Well, at least this garbled bit of
techno-speak did include a com-
puter "buzzword' (menus).

N: "Japan, Inc., (whatever that means)
is also interested in the lucrative
personal-computer market and
looms as a major threat to U.S.
manufacturers..."

Z: I've been hearing this for at least a
couple of years. All I can tell you is
most Japanese computers which I've
seen to date are derivative garbage.
I'm sure they11 get the hardware
cooking at some point in the future.
From what I've seen so far, I doubt
that quality software will follow
unless it has been written in North
America or Great Britain.

N: "... in fact, the Japanese make most
of the disk drives, video screens and
printers used in the United States."

Z:Head for the fallout shelters! The
herd of flying bisons overhead are
on a bombing run. In fairness, the
Japanese do make some excellent
printers. (The NEC Spinwriter is one
of my all time favorites).

N: [about word processors] ". . .lets you
and your computer manipulate
words on a page, edit the text and
print out flawless copy..."

Z: Weren't these the very programs
used to create the abundance of
unattractive and almost totally
unreadable technical manuals which
I see more often than not. 'Flawless
copy', my [bad word deleted]!!!

N:"Load in the games so f tware
package that transforms your com-
puter into an electronic playing
field,..."

Z: Nice hyperbole! Could it be that N:
meant transforming one's CRT into
an electronic playing field?

N: "...'Programming is as simple as
Lego Blocks or Tinker Toys,' says
Atari's Alan Kay..."

Lifelines, Volume II, Number 11

Z: Why not! I suppose a fair test would
be to summon' up a live, in person
recital by Luciano Pavarotti in the
comfort of my living room and to
invite you know who (in her tight
Calvins) over for the explore' part.

Perhaps the most telling aspect of all
this is that in addition to all the editor
types who approved the final copy, no
less than five Newsweek corres-
pondents were responsible for this
'Home is Where the Computer is' arti-
cle. Back when Newsweek used to cost
only a quarter a copy, there was a bet-
ter bargain to be had in content as well.

Attention Dealers!
There are a lot of reasons why you should be carrying

Lifelines/The Software Magazine in your store. To provide
the fullest possible service to your customers, you must

make this unique publication available. It will keep them up
to date on the changing world of software: on updates,

new products, and techniques that will help them use the
packages you sell. Lifelines can back up the guidance

you give your customers, with solid facts on the capabilities
of different products and their suitability to a variety of

situations. Now we can also offer you an index of all back
issues of Lifelines, opening up a full library of information

for you and your customers.

For information on our dealer package, call (212)
722-1700, or write to Lifelines Dealer Dept., 1651 Third

Ave., New York, N.Y. 10028.

Finally, my friend Charlie G. called
from Los Angeles to tell me about the
new Apple II he had bought for his per-
sonal amusement. (Lord knows he de-
serves some amusement. He is a physi-
cian who performs human autopsies -
no fooling). Anyway, C.G. asked me
why all his little $30 and $40 dollar Ap-
ple games were copy protected and
why all the far more costly CP/M stuff
in my collection wasn't. My learned
reply; "Beats me, Charlie".

Bye for now,
Zoso

Gift Subscriptions
You should consider gift subscriptions to Lifelines/The Software Magazine for your friends and relatives
who are involved in microcomputing. As you probably realize from your own experience, the price of a
subscription is small for the money Lifelines can save you in a year. Just send a check or credit card
number and fill out the form below* . (Or call [212] 722-1700.) We’ll send your gifted one a note to let them
know of their good fortune, and we’ll send you a free Zoso T-shirt. (Don’t forget to tell us your size.)

Your name and address: The name and address of the gifted one:

Name
Address '
City State Zip

Shirt size
Check enclosed

VISA or MasterCard Number
Expiration Date

Name
Address
City State Zip

* All orders must be prepaid by VISA, MasterCard
or check. Checks must be in U.S. $, drawn on a U.S.
bank. Subscription rates are $18 for twelve issues
(one year) when the destination is the U.S., Canada,
or Mexico. For subscriptions going to all other coun-
tries, the price is $40 for twelve issues.Signature (if payment is by credit card)

24 Lifelines, April 1982

Features

What About SpellStar?
Robert Van Natta

Star, even though you don't have
SpellStar. Answer the question about
whether you want to begin searching at
the beginning or end of the file, and you
are off on a cheap trip demonstrating
how the SpellStar review works.
Remember to abandon the edit when
you are done playing around or you
will have murdered the file you played
with; but with a little imagination you
can get the feel of how the SpellStar
review works without spending a dime.
The correction process works as fol-
lows: the dictionary checking routine
flags all suspect words. You move
through the file in a global search
fashion, moving from word to word by
hitting 'I' for ignore, 'D' for add to dic-
tionary, or 'F' for fix word. Upon ar-
rival at a suspect word the flag is auto-
matically deleted and the word is high-
lighted (on highlighting terminals). If
you choose to ignore or add it to the
dictionary this will be done and the
next word will be highlighted. If the fix
option is chosen, then you drop into
the edit mode with the cursor on the
first letter of the suspect word and any
editing of the operator's choice may be
done (including saving the file, exiting
WordStar, and going out to coffee); the
SpellStar correction routine may be re-
sumed at any time with a TL command
(or a tQL if you have shut the system
down or done global searches in the in-
terim).

Words which are set aside for the dic-
tionary during the error review proce-
dure may be designated for the main
dictionary or a supplemental diction-
ary, but are not actually added to the
dictionary. Instead, they go into a file
bearing the name of your file being
edited with the type 'ADD'. They will
never become a part of the dictionary
until you expressly incorporate them
using the maintenance routines.

The 'ADD' file can also be processed in-
to a supplemental dictionary. This is
useful if the same document must be
processed repeatedly, as the words pe-
culiar to that document may be made

(continued next page)

consists of about twenty thousand
words and consumes 98k of disk space.
How Does SpellStar Work?
The operation of SpellStar is very sim-
ple. First, you push 'S' off of the main
menu of WordStar. Then you enter the
name of the file to be checked or main-
tained, followed by a declaration of
whether you wish to check spelling or
do dictionary maintenance. Next, a
menu of spelling check controls must
be reviewed, which presents an oppor-
tunity to designate the dictionary and a
supplemental dictionary. (SpellStar
will allow a check of your text against
two dictionaries at the same time.)
Finally, a chance is given to designate a
work drive (more about this later) and
the checking begins. All in all,
however, the menu sounds worse than
it is, because default choices are pro-
vided and intervention is only needed if
variation from the default is required.

Once the checking is complete, an op-
portunity to abandon the check is
presented along with an option to see a
list of the suspect words en masse.
Finally, the suspect words are all flag-
ged in a file which is of the type
. @ @ @ . WordStar is then reloaded in a
quasi-edit mode and the review begins.
(Translation: Superficially it looks like
the edit mode but doesn't work like the
edit mode because the keyboard is dead
except for the five keys which control
the disposition of the marked words.)

Any WordStar user having version
3.00 can display the review menu with
the command TQL, regardless of
whether they have the SpellStar op-
tion. You can first set the help level to 3
(so all instructions show). Second,
load some file into the editor that has
some null bytes in it. These will display
as a T@ on your screen. Load it in the
editor as if you were going to edit it
anyway. Most likely you will see a
Digital Research copyright notice and
about half a screen of garbage. Now
use the command tQL which is a work-
ing command in version 3.00 of Word-

Editor's Note: This is the first section in
an evaluation of spelling checkers and
spelling correction software. Next
month, James Mills will cover several
other products.

Surely no one has looked at WordStai
version 3.00 and not at least wondered
about the "S" command for SpellStar.
Dictionary programs are this year's fad
in word processing and SpellStar is
MicroPro's effort to avoid missing out
on it. The November 1981 issue of Byte
carried a comprehensive comparison of
five leading spelling programs, but
SpellStar was not on the list because it
was released long after the deadline for
that publication.

For the sake of convenience, the bench-
marks used will be similar to those used
in the aforementioned review. The
Byte author used a Superbrain and this
writer used a Radio Shack Model II;
thus the times will not be directly com-
parable; it appears that the 8-inch
drives give much better performance
than the 5-inch Superbrain drives.

For example, using SpellGuard, this
writer can complete the corrections of
the benchmark test in under three
minutes - over forty seconds faster
than the reported time for the Super-
brain. However, the Superbrain re-
quired a disk change, which the Radio
Shack didn't, and the Radio Shack
would read the file and do the actual
checking in twenty-seven seconds flat
compared to fifty six seconds for the
Superbrain. Similarly, the Radio Shack
would complete the proofreading of a
ten thousand word file using Spell-
Guard in fifty four seconds compared
to a reported 1:06 for a three thousand
word file on the 5-inch machine.
How is Spellstar Put
Together?
SpellStar consists of two files. The first
is SPELSTAR.OVR. It is 30k in size and
is the program overlay. The second is
SPELLSTAR.DCT, the dictionary. It

Lifelines, Volume II, Number 11 25

into a supplemental dictionary after the
first run. This feature offers the advan-
tage of a custom dictionary without
adding clutter to the main dictionary.

inordinate delays in getting the job
done, and the huge amount of disk
space required. For example, to process
the maximum sized 66k file, file work-
space of not less than 152k is required.
Fortunately, the operator can designate
a work drive and override the default
designation of the logged in drive (a
small consolation if you have only one
or two cluttered disks to choose from,
but a big help on systems with three or
four drives). It boggles the mind to con-
template a word processing system so
large that three or more double density
8-inch drives are necessary to make it
work conveniently, but this is not much
of an exaggeration if 50k and larger
files are to be routinely managed.

SpellStar, in this writer's opinion, has
some very serious limitations. The
most trivial of the problems is its in-
compatibility with Lifeboat CP/M ver-
sion 2.25b for the Radio Shack Model II
(if WordStar is installed using the Radio
Shack INSTALL routines which imple-
ment the memory mapped video
board). It can be assumed that this
problem will be cured by the bug catch-
ers, as it this was not a problem in ver-
sion 2.24, and version 2.25c has
already been released (but who knows
if this bug was fixed). In any event, this
writer solved that problem by reinstall-
ing WordStar using the ADM-31 ter-
minal option.

Next the file BOOK.@@1 is sorted in-
to a file called SORT.$$$. This file will
be just as large as BOOK.@@1 (2k
larger on this writer's test) and will con-
tain all the same words, but they will be
sorted alphabetically by length. Thus,
if the source file contains the word 'an'
twenty seven times, you will find twen-
ty seven repetitions near the beginning
of the file. Similarly, nineteen-Ietter
words beginning with a Z' will be near
the end of the file. Once this file is writ-
ten, still a third work file is written,
called BOOK. @ @2. This file is much
smaller and contains only the unique
words. Its size is echoed to the screen as
the "NUMBER OF DIFFERENT
WORDS". On my test file it contained
1515 different words and consumed
14k of drive space. Once this third
work file is complete, the two previous
work files are deleted and the actual
spelling check routine is ready to begin
in earnest. Elapsed time for the 66k test
file to this point is approximately five
minutes.

Once this housekeeping is done, the
dictionary files are opened and the

Lifelines, April 1982

What Are The Problems?

SpellStar, in this writer's opinion, has
some very serious limitations. How-
ever, one problem is not with SpellStar:
its difficulty with Lifeboat CP/M ver-
sion 2.25b for the Radio Shack Model II
(if WordStar is installed using the Radio
Shack INSTALL routines which im-
plement the memory mapped video
board). In any event, this writer solved
that problem by reinstalling WordStar
using the ADM-31 terminal option.

What are the Good
Features?

SpellStar is menu-driven, with rea-
sonably good explanations on the
menus. The checking-correction rou-
tines are similar to SpellGuard's, and
are easier to use, since the mismatch
review routine is inside of WordStar
and the words are viewed in their pro-
per context. The automatically disap-
pearing flag, and the ability to bring the
full power of the WordStar editor to
bear on an offending word before going
onto another word tend to encourage
the use of the trip through the file as an
opportunity to do general editing and
spelling correction at the same time.
Also, for what it's worth, SpellStar
drops you at the beginning of the word
when you enter the fix routine.

On the dictionary maintenance end,
the comparison is much harder. In this
respect, SpellGuard and SpellStar are
not at all comparable. SpellGuard is, at
least to some extent, self-maintaining.
Words designated for addition to the
dictionary are on occasion sorted auto-
matically into the dictionary, without
operator intervention. There is not
much other maintenance possible, so
SpellGuard would have to be rated
'simple, and easy to use' from a main-
tenance standpoint, but also 'weak'. By
comparison, SpellStar has a very pow-
erful (translation: complex) set of
maintenance features. If you like
menus with more choices than you will
ever use or understand, you will love
running maintenance with SpellStar.
WordStar has never been criticized for
being short of features, and SpellStar
follows suit. The maintenance menu
will let you do anything you can im-
agine to a dictionary, and more.

As far as documentation goes, Spell-
Star comes with a scant twenty-one
pages of documentation, intended to
drop into the WordStar manual as
Chapter 13. It is similar in conciseness
and clarity to the rest of the WordStar
manual. It should be rated as adequate
for the job.

The real problem with SpellStar is that
it is not only slow but also a drive hog.
The Radio Shack with SpellGuard will
complete the Byte benchmark through
the checking routine in a fast forty
seconds; the forty seven suspect words
can be reviewed and the seven correc-
tions made (using WordStar) in 2:57
minutes. With SpellStar the checking is
done after a leisurely 1:23 minutes
(with forty five suspect words - if soft
hyphens were used in the text) and the
entire correction job can be completed
in 4:03 minutes. With a small file like
the one used for the benchmark, the de-
lay is only annoying and not horrible.
But it gets horrible in a hurry if a large
file is substituted.

Don't try too big a file! First off,
although it isn't mentioned in the
documentation, SpellStar bombs out
during the checking routine if you at-
tempt to check a file with more than
9500 words in it. An error message is
displayed but the error is not trapped,
so the reset button is the only recovery
method. A 9500 word file is pretty
sizable (22.5 pages single spaced or
about 66k) but it was still a rude shock
to learn of this l imitation. It is
frustrating to sit in front of your glass
teletype for over six minutes staring at
it uselessly before it gets to the crash
point. The only way this writer could
find to avoid the six minute wait for a
crash on such a file was to attempt to
run SpellStar on relatively full disks. In
this event you would crash with a fully
trapped disk-full error after only two
or three minutes and could get on to
something else without so long a delay.

The reason for SpellStar's delay is its ir-
repressible urge to write many large
work files. This accounts for both the

the documents would not be less of a
penalty.

At the other end of the spectrum, it is
obvious that the productivity penalty
is going to be insignificant if the ap-
plication consists of only a single docu-
ment a day. This writer has reapplied
SpellStar to occasional use for review
of his free lance writings, computer
program documentation, Supreme
Court briefs, and the like - and found
the results very satisfying.

It is, therefore, the combined wisdom
of all the self-proclaimed micro-
computer spelling program experts in
St. Helens, Oregon (yours truly and
my pet tomcat) that: a) spelling pro-
grams are not properly applied to pro-
duction typing situations where the
documents are short; and b) they work
well for creative typists (translation:
slow) working on relatively long
documents; and c) the poor perfor-
mance of SpellStar is hardware caused
and could be expected to improve
markedly on a high performance hard
disk system (or would that be a hard-
ware fix for a bad software design)!

(Editor's Note: Spelling checkers are
recommended for those who write for
publication!)

unique word list is matched against the
dictionary or dictionaries, as the case
may be. This happens in about 1:15
minutes and then another work file is
written containing the flagged suspect
words (BOOK. @ @3); finally, if you
do not abandon the check, a flagged
ve r s ion of your o r ig ina l file
(BOOK.@@@) is written and Word-
Star is loaded, with the cursor placed at
the first suspect word and ready for
review and corrections about 6:48
minutes after you started. Only after
you do a 'save" from the edit mode is
your o r ig ina l file r enamed to
BOOK. BAK and your corrected ver-
sion named BOOK. You may also find
a work file showing up on your disks
called BOOK. @ @4. It appears as a
companion to BOOK. @ @3 but its
function has not been deciphered by
this writer.

As a final note about the work files,
you should recognize that they are just
that - work files. If SpellStar is run to
its normal conclusion, they are deleted.
However, any time you make an
unscheduled departure from SpellStar,
(which will be frequently until you
remember to keep generous quantities
of workspace available, and further
remember to either log that drive in or
expressly designate it upon loading
SpellStar), several work files will be left
behind. They should be deleted forth-
with as some of them may be very
large, and will add clutter quickly.

Conclusion

On further reflection, this writer is con-
vinced that the true failure is one of
unrealistic expectations and poor
systems analysis. A microcomputer
may be applied to word processing
tasks which range from a large volume
of short documents (1 to 5 pages which
are lightly processed) to a low volume
of large documents (over five pages
which are extensively processed). It is
only rational to junk a one thousand
dollar typewriter in favor of a eight
thousand dollar micro-computer if
there is a reasonable expectation of in-
creased productivity. A moment of
reflection will reveal that: a) spelling
checking routines are non-productive;
and b) their adverse effect on produc-
tivity is a function of how often they
are used, and how fast they operate. It,
likewise, logically follows that the fre-
quency of use is going to be applica-
tion-dependent. The Byte benchmark
of about four hundred words would
take a moderately productive typist
eight minutes to type. If it takes four
minutes to run through the spelling
verification and word review, you have
generated a whopping 33 % production
loss. Similarly, shorter documents or
faster typists would aggravate the pro-
ductivity drop even more. It is hard to
believe that merely typing a little more
carefully, or manually proofreading

In conclusion, SpellStar has been a
disappointment. This writer is a lawyer
in a small office. SpellStar was ac-
quired with the idea that it would aug-
ment WordStar in the daily production
of dozens of legal documents. My
hopes were shattered when my per-
sonal secretary flatly refused to use it,
summarily declared "It's too slow!",
and then added insult to injury by
demanding to know which files related
to it so she could recover the space on
her system disk for other uses.

It is tempting to simply declare that it is
an unsatisfactory product and leave it
at that. Such a conclusion would be un-
fair, however. There are three general
causes of unsatisfactory results in the
computer world. Lame software is only
one of those causes. Inherent hardware
limitations, and misapplication or
unrealistic user expectations are others.

Lifelines, Volume II, Number 11 27

Features

The Ultimate Printer?
Dave Hardy

movements that must be made at high
speed.

Less common than the "projecting"
kind of phototypesetter, but rapidly
becoming very popular, is the CRT
phototypesetter. This machine works
by passing photographic paper or film
over a very high resolution CRT on
which each character to be typeset is
displayed. The image is painted on the
CRT, usually a line at a time, using the
same "raster scan" techniques that are
used in a regular television set, except
the scan is usually vertical, and the
number of lines scanned per inch is
usually between three hundred and
nine hundred . After each line is
"printed", the paper is moved vertically
to the next line. It's rather like taking a
snapshot of a TV set, except the picture
tube is narrower and produces a much
sharper picture. (And, of course, there
are no commercials.)

The output of the phototypesetter is
also one of its biggest disadvantages,
since photographic paper is fairly ex-
pensive (up to $1 per foot) and requires
chemical development, which requires
a special machine called a photo-
graphic processor.

Recently, LASER-based phototypeset-
ters have become available that can
produce the same kind of output that a
phototypesetter makes and at a much
lower cost. They often use a metal
coated paper (shades of AXIOM!)
which eliminates the cost and hassle of
photographic paper. Although LASER
based machines can be much faster
than conventional ones, they are not
yet as widely accepted as conventional
phototypesetters and may remain in
the background for a while before be-
coming popular.

There are also still "old style" typeset-
ting machines in use that actually cast
each character in molten metal as it is
typed by a skilled (and usually old)
machinist-operator. These are the
machines seen in the movies with giant
mechanical levers and gears moving
about, clicking and snapping while

TV channel numbers you see in TV
GUIDE, or the little square boxes that
are used on ballots to 'check here").

Background Of
Phototypesetters And
Typesetters In General

As an engineer, and definitely NOT a
Printer (which I spell here with a
Capital "P" to show that I am referring
to the person or job classification, and
not the machine), I am really only
slightly interested in the evolution of
the Printer's tools. The following brief
overview is presented to give the reader
an idea of the printing industry's
machines and to "lay the groundwork"
for those who are not familiar with
typesetting and printing in general. It is
by no means, however, a complete pic-
ture of the printing industry or of all of
the typesetting machines available.

There are actually several different
kinds of typesetting machines, but the
most widely used is called a PHOTO-
TYPESETTER. Unlike a line printer,
the phototypesetter creates its output
by projecting images on a piece of light
sensitive material. The most common
phototypesetters work by projecting
light through a piece of film or glass
plate that has marked on it the images
of the characters it is to produce. After
passing through this special "font
strip," the light is bounced off of a mir-
ror and focused onto a piece of light
sensitive paper or film that can be
moved vertically, like the paper in a
typewriter. After each character is pro-
jected onto the paper, the mirror is
moved so that it will reflect the next
character onto the next horizontal posi-
tion on the paper, the same way a
typewriter's carriage moves after a key
is struck. After an entire line has been
"printed," the mirror returns back to
the beginning of the line, and the paper
is advanced vertically to the next line.
If you think this is very complicated,
you are right. It is theoretically very
simple, but actually incredibly com-
plex because of all of the very precise

Introduction

Most computer people think of print-
ing as the stuff that comes out of the
system list device of their favorite com-
puter. Usually, the results look like a
bunch of closely spaced dots that, upon
close inspection, only vaguely resem-
ble the characters they are supposed to
represent. More expensive printers
make better looking characters, but
still, the results are often not as good as
can be found in even the cheapest daily
newspaper or magazine.

The reason for this is that most publica-
tions use a very specialized type of
printer, called a TYPESETTER, to print
their data. If you think you had trouble
hooking your SpinWriter or Epson
printer to your system, you should try
connecting a typesetter! Although the
hardware interface can be relatively
simple, many typesetters have over a
hundred different commands that are
required to do the special functions that
you see in professional publications.

For example, a typesetter can auto-
matically space words and characters
on a line to make them more appealing
to the human eye. It can also change
character sets (called FONTS) instant-
ly, and without any manual interven-
tion from an operator.

In addition, it can print characters in
virtually any size, usually from a few
hundredths of an inch to over an inch in
height. It can italicize, underline,
boldface, super- or sub-script char-
acters or words, often add footnotes
and page numbers automatically,
automatically (and correctly) break
long words for hyphenation, change
line length and spacing, and sometimes
even fit characters around a picture or
drawing.

It can also print virtually any special
character that you can imagine. Well
over a thousand fonts are available for
typesetters, including special fonts
(called PI fonts) that consist of nothing
but unusual characters (like the little

28 Lifelines, April 1982

some old figure smoking a big cigar
plucks away at an oversized keyboard
that looks like the pipe organ used in
"Phantom of the Opera." These "hot
metal" machines are rapidly being
eliminated and replaced by the newer
more cost-effective phototypesetters
(which are sometimes called "cold
type" machines for their lack of molten
metal).

"Hot metal" machines do have one ad-
vantage over "cold type" machines,
however. Their output is actual metal
characters, ready to be mounted on a
printing press and used. "Cold type"
must be photographed on a special
film, which must then be sent through a
"plate-making" process to make a plate
that can only then be mounted on the
printing press. Although "cold type"
requires a few more steps to get a
finished product, it is so much more ef-
ficient and easily produced that the ex-
tra processes it requires are relatively
insignificant.

Why Interface
A Small Computer
To A Phototypesetter?

OK, so much for history. Now, why
would anyone want to connect a com-
puter to a typesetter? The reason is ac-
tually threefold - efficiency, quality,
and cost.

Efficiency is increased because the
amount of human labor required to
create a typeset product is decreased. In
many cases, data from the computer
can be turned into camera-ready type-
setter output without any operator in-
tervention whatsoever. For example, a
reporter's newspaper story can be sent
directly from his/her word processor
to the computer, formatted and trans-
lated, and from there be sent directly to
a phototypesetter without ever being
touched by human hands. This pro-
cedure works very well, and it is used
routinely where I work, with im-
pressive results. In fact, it is actually
easier for me to get a CP/M file listing
typeset than it is to get it listed on one of
our SpinWriters!

The difference in quality between a
typeset article and one that has been
listed on a line printer is startling. If you
don't believe it, compare some of the
earlier un-typeset copies of Lifelines
with some of the later issues that have
been typeset. The typeset issues are

ASCII CHARACTER
CODE NAME

TTS ASCII CHARACTER TTS
CODE CODE NAME CODE

@ 36H 13H
A 06
B 32
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
w
X
Y
Z
SHIFT ADD THIN
SHIFT EN LEADER
SHIFT EM LEADER
SHIFT VERT RULE
CENT SIGN
OPEN QUOTE (‘)
a
b
c
d
e
f
g
h

TAPE FEED OOH
THIN SPACE 01
EN SPACE ID
EM SPACE OB
QUAD LEFT IB
QUAD CENTER 3D
COMMAND N/A
BELL 17
UNSHIFT 3E
UPPER MAGAZINE IF
LOWER MAGAZINE 05
UPPER RAIL 33
LOWER RAIL 37
SCREEN RETURN N/A
QUAD RIGHT IF
SUPERSHIFT 25
SHIFT 36
1/8 36 3B
¥4 36 27
3/8 36 03
¥2 36 15
5/8 36 21
¥4 36 2B
7/8 36 OF
EM DASH 36 0D
+ 1UNIT 36 05
-1 UNIT 05

START BLOCK N/A
END BLOCK N/A
UNSHIFT ELEVATE 3E 04
SHIFT ELEVATE 36 04
DIVIDE N/A
SPACE 08
i 36 07

N/A
N/A
$ 07
% N/A
& 25 OF
APOSTROPHE (') 11
(36 23
) 23
* 25 15
+ N/A
UNSHIFT COMMA 19
HYPHEN 13
UNSHIFT PERIOD 39
/ N/A
0 2D
1 3B
2 27
3 03
4 15
5 21
6 2B
7 OF
8 0D
9 31

36 35
35

SHIFT COMMA 36 19
= N/A
SHIFT PERIOD 36 39
? 36 2D

U
-i

k
1
m
n
o
P
q
r 14
s 0A
t 20
u 0E
V 3C
w 26
X 3A
y 2A
z 22
UNSHIFT ADD THIN 09
UNSHIFT EN LEADER 2F
UNSHIFT EM LEADER 29
UNSHIFT VERT RULE N/A
RUBOUT 3F

TABLE 1. - A sample ASCII to TTS
conversion table.

Note that some ASCII characters require 2 TTS characters for conversion, and that some
characters have been omitted for clarity. The CHARACTER NAME columns contain the
TTS character name, although it is usually also the ASCII character name as well.

(continued next page)
Lifelines, Volume II, Number 11 29

much clearer, easier to read and under-
stand, and generally a good deal more
appealing to the eye. If you've ever
cursed the illegible program listings in
the back of some of the popular com-
puter magazines, then you know at
least one of the advantages of typeset-
ting. An old ASR-33 is just not going to
produce output that can be printed in a
magazine and easily read. Many publi-
cations refuse to typeset program
listings because it is so easy to in-
troduce errors into the program. In-
stead, they just photograph the original
listings submitted by the authors,
which reduces their quality even fur-
ther. Sending a program directly from a
computer to a typesetter could elimin-
ate this problem completely.

(Editor's Note: Communicating listings
from a computer to certain typesetters
can be a problem however. On some
typesetting equipment, it is impossible
to dispense with proportional spacing
of the characters. For this reason, type-
set program listings can be hard to
understand or incorrect.)

Sounds pretty good so far, but what
about price? Well, a new, high-quality,
high-speed CRT-based phototypesetter
could easily set you back over $50,000,
not including the interface to your
machine. However, the popularity of
CRT-based typesetters has caused the
value of the older "projected light"
phototypesetters to decrease drama-
tically to a point where they can often
be purchased for less than the price of a
SpinWriter. Many old machines (es-
pecially the Compugraphic 2900 and
4900 series) can frequently be pur-
chased for just a few hundred dollars
from printing houses that have updated
to newer technology. Mergenthaler
Linotype's VIP series phototypesetters
can often be purchased for less than
$3000, and these machines are still be-
ing used to produce high quality output
by thousands of very demanding print-
ing houses. Of course, they lack some
of the features of the $50,000 units, but
the quality of their output is very near-
ly as good. If you have a few more
bucks, many manufacturers will be
glad to sell you a small but adequate
pho to typese t t e r brand new, for
$15,000 or so.

Bear in mind, that, unless you purchase
a machine that uses aluminized paper
or something, you will also have to add
in the cost of a photographic processor.
You could spend anything from a few
dollars (the amateur photographer

Type Face [Fxxx]
Point Size
Height Change
Width Change
Film Advance
Line Length
Hyphenation

[Px] or [Px.5]
[Hx]
[Wx]
[Lp] or [Lp.25]
[Mpc] or [Mpc.p]
\AH= Allow \XH = Cancel

Letterspace
\- = Discretionary
\AL = Allow \XL = Cancel

Italicize \I= Allow \R = Cancel
Stop
Immediate Film Movement

\s
[Ap] = Advance [Bp] = Reverse

Cancel Film Advance at EOL
Kerning (in 54ths)

\z
\ABxx= Negative \AFxx = Positive

Kerning (in 18ths) \Qx= Negative \x= Positive
Character Spacing \AKx= Tighten \AEx = Expand
Indent [IpLn]=Left [IpRn]= Right
Hanging Indent Left
Indent - Outline

[IpH]
[ItLn]=Left [ItRn]=Right

Paragraph Indent [IpS] = Set \E=Enable
Cancel All Indents
Auto Leader
Ragged Right
Ragged Left
Ragged Center
Cancel Ragged
Set Tab Columns

[IC]
\Jx
\AR
\AG
\AC
\XR
[TOMpTlMp. . ,T29Mp]

Start Tab
Justify Tab Column
End Tab
Start Vertical Tab
Change Vertical Tab
End Vertical Tab
Display Superiors
Superiors
Inferiors
Bottom Rule
Horizontal Rule
Vertical Rule
Auto Fraction
Piece Accents
Base-Line Jump
Variable Start of Line
User Format

\T
\ -

\VS
\vc
\BE
\Ln
\Ucpn
\Dcpn
\B
\{M} or \{N}
\{T}
\Yx/x\Y
\Px
[Jp]
[Vpc] or [Vpc.p]
[Dx[data]] = Define [LJx]=Use

Breakpoint in Format
Postpone Format

w
[GDxUx] = Points [GNxUx]= Lines
[GLxUx] = Inches

TABLE 2 - A TYPICAL TYPESETTER COMMAND SET
p= Points, pc = Picas, n and x represent required numbers

computer habit, this means of getting
"on-line" could save you a small for-
tune and a lot of grief.

route) to several hundred or even a few
thousand dollars (automatic, motor-
ized, temperature controlled, etc.).

What this all means is that, unless you
are a VERY dedicated hobbyist, you
are probably not going to invest in all
this stuff just to read your master
catalog in Bodoni Bold Italic (a com-
mon but distinctive font). But if you
have a need for typeset output in your
business, or want to start a small
typesetting business to support your

Requirements For
Hardware Interface

Connecting a phototypesetting ma-
chine to a small computer is usually
very easy, in the physical sense. Photo-
typesetters are really just mini-or

Lifelines, April 198230

Listing 3
io '
20 ' WSTOTTS - Translate an ASCII file to TTS

microcomputers with very sophis-
ticated video displays, so they are often
remarkably simple to interface. Most
phototypesetters use a paper tape
reader as their main data input device,
so getting your computer's data into
them is usually no more difficult than
removing the reader and wiring a sim-
ple parallel interface with a strobe and
acknowledge signal. (In reality, there
are usually a few problems that have to
be worked out, but the basic idea is just
to trick the typesetter into thinking that
your computer is a paper tape reader.)
Some typesetters also have serial (RS-
232-C) input capability, which makes
interfacing even easier. The Com-
pugraphic EditWriter series is such a
machine, and it even accepts ASCII in-
put. If you have a typesetter that
doesn't have a serial input, you can
sometimes buy one from the manufac-
turer, but this is often an expensive
(>$1000) option that requires adding
another circuit board to the typesetter
and implementing the manufacturer's
protocol in software and hardware. It
is very often easier to just use the paper
tape reader.

30 ' and send it to an output port
40 '
50 DIM TTS(130)' Make room for the conversion array.
60 LINE INPUT;"Enter ASCII file name ,FILNAM$
70 OPEN "I",1,FILNAM$
80 GOSUB 600' Initialize some variables.
90 IF EOF(l) THEN END
100 LINE INPUT #1,A$' Get a line from the file
110 FOR P=1 TO LEN(A$)Z and read it 1 character at a time.
120 PC$=MID$(A$,P ,1)
130 GOSUB 190 z Translate each character and send it to
140 NEXT P z the typesetter.
150 GOTO 90
160 '
170 ' TRANSLATE AND SEND subroutine.
180 ' Check for special case before translating.
190 IF PC$=CHR$(&H7B) THEN 410 z Special expanded character?
200 IF PC$=CHR$(&HD) THEN RETURN' Ignore carriage returns
210 IF PC$=CHR$(&HA) THEN RETURN' and linefeeds.
220 PN=TTS(ASC(PC$))' Else translate the character
230 GOSUB 290' to TTS and send it out.
240 RETURN
250 '
260 ' SEND subroutine.
270 ' Send the character to the typesetter, but first
280 ' adjust the shift mode if necessary.
290 P5=PN
300 IF P5>128 AND SHIFT=0 THEN SHIFT=1:P5=27:GOSUB 360:P5=PN-128:GOTO 360
310 IF P5<128 AND SHIFT=1 THEN SHIFT=0:P5=31:G0SUB 360:P5=PN:GOTO 360
320 IF P5>128 THEN P5=P5-128
330 ' This section assumes that SUPERSHIFT is in effect for next CHAR ONLY.
340 IF P5=27 THEN SHIFT=1' Set SHIFT mode if code=SHIFT
350 IF P5=31 THEN SHIFT=0' Set UNSHIFT mode if code=UNSHIFT
360 OUT &H44,P5' Then send it to typesetter.
370 RETURN
380 '
390 ' SPECIAL CHARACTER subroutine.
400 ' Process special expanded characters.
410 PTEMP$=""
420 P=P+1' Look at next character in line

Requirements For Software
Interface

430 PC$=MID$(A$,P,1)' to see which special character.
440 IF PC$OCHR$(&H7D) THEN PTEMP$=PTEMP$+MID$(A$,P,1):G0T0 420
450 PN=TTS(0)' Make PN$ NULL just in case illegal character

The software interface is almost always
the most difficult part. Many of the
simplest things to a computer printer
become enormously complicated for a
typesetter. This may be due to the fact
that typesetting is mostly an art that
has developed to produce things that
are appealing to the human eye, while
computer printing is the result of a
more scientific endeavor that tends to
make things less appealing to the eye
but more appealing to the brain.

For example, in the computer world,
each character to be printed occupies
the same amount of horizontal space,
say one-tenth of an inch. In the typeset-
ting world, characters are assigned
variable widths that are determined by
the typesetter at the time that the line is
printed. Although proportional-spac-
ing printers like the DIABLO HYTYPE
or NEC SpinWriter are readily avail-
able, none has yet achieved the very
high resolution required of a typesetter.
Not even dot-resolution graphics print-
ers can match the ability of a typesetter,
even though many manufacturers
claim that they can.

Lifelines, Volume II, Number 11

460 IF PTEMP$="N" THEN PN=TTS(10)'
470 IF PTEMP$="M" THEN PN=TTS(1)'
480 IF PTEMP$="T" THEN PN=TTS(2)'
490 IF PTEMP$="U" THEN PN=TTS(3)'
500 IF PTEMP$="S" THEN PN=TTS(4)'
510 IF PTEMP$="UR" THEN PN=TTS(5)'
520 IF PTEMP$="LR" THEN PN=TTS(6)'
530 IF PTEMP$="NL" THEN PN=TTS(8)'
540 IF PTEMP$="AT" THEN PN=TTS(9)'
550 GOSUB 290'
560 RETURN
570 '
580 '
590 ' INITIALIZATION subroutine.
600 FOR P=0 TO 127:READ TTS(P):NEXT
610 SHIFT=0'
620 PN=31
630 GOSUB 290'
640 RETURN'

EN SPACE (These are the special
EM SPACE characters used here.)
THIN SPACE
UNSHIFT
SHIFT
UPPER RAIL
LOWER RAIL
EN LEADER
ADD THIN

Then send the character out.

P' Read the ASCII/TTS array
Initialize SHIFT mode to UNSHIFT

Send UNSHIFT code to typesetter
to initialize it, then return

650 '
660 ' DATA FOR ASCII TO TTS TRANSLATION
670 '
680 ' This is the TTS look-up table, indexed by ASCII value.
690 ' These are actually REVERSE TTS codes , which means that

700 ' the TTS codes have been flipped (8-bit becomes 1-bit,
710 ' 7-bit becomes 2 bit, etc.) and shifted right 2 positions.
720 ' Eight-bit SET means that the character needs SHIFT mode.
730 '
740 DATA 0, 52, 32, 31, 27, 51, 59, 58, 61, 36
750 DATA 46, 0, 0, 0, 0, 0, 0, 0, 0, 0
760 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
770 DATA 0, 0, 4, 184, 127, 23, 56, 23, 163, 34
780 DATA 177, 49, 23, 23, 38, 50, 39, 162, 45, 55
790 DATA 57, 48, 42, 33, 53, 60, 44, 35, 171, 43

(Listing 3 continued next page)
31

Listing 3 (continued)Another problem that occurs whenever
computers send data to typesetters is
that most small computers "talk" in
ASCII, while most typesetters "talk" in
TTS. In case you've never heard of
TTS, it is a coding system used by
Printers that was developed to simplify
the coding requirements of the old "hot
metal" machines. TTS stands for "Tele-
TypeSetter," (which is a trademark of
Fairchild Graphic Equipment Corpora-
tion) and I'm sure that any ten Printers
you ask will give you ten different
stories about how it originated. Need-
less to say, it is not a convenient code to
work with. Unlike ASCII and EBC-
DIC, where character positions can be
"calculated" ("C" = "A"+2) and char-
acters are in a nice straightforward
order, none of the characters in TTS is
in any recognizable order. The most
believable explanation of TTS coding
that I have ever heard is that the codes
were assigned to each character accord-
ing to frequency of use to reduce the
wear on parts in the early mechanical
typesetters. So an "E" (which is the
character that usually occurs most in
text) received the simplest code, and so
on. I have no proof of this theory, but
my boss swears that it is so, and since
he signs my paycheck EVERY week, I
accept it as Truth.

There are many other problems with
TTS coding. TTS does not recognize
case. Instead, it uses "shift modes" to
decide whether a character should be in
upper or lower case. TTS coding is less
efficient than ASCII for computers, be-
cause it may take two codes to repre-
sent a single character, whereas ASCII
has a unique code for everything. Table
1 contains a sample ASCII to TTS con-
version table. I call it a "sample" table
because ASCII and TTS can NOT be
directly translated. TTS, although con-
sisting of only sixty-four unique codes,
has many characters that are not repre-
sented in ASCII coding, so these char-
acters must be arbitrarily assigned to
some ASCII value. Similarly, ASCII
has some characters that can't be trans-
lated into TTS, and which must also be
arbitrarily assigned to some TTS value.
Fortunately, when sending data from a
small computer to a typesetter, only the
ASCII to TTS translation must be used.
A few typesetters accept ASCII coding,
which eliminates all of these problems,
but most of the "good deals" that you
can buy speak "TTS".

To make things even harder, almost
every brand of typesetter uses a differ-

800 DATA 54, 0, 62, 173, 23 , 152, 147, 142 , 146, 144
810 DATA 150, 139, 133, 140 , 154, 158, 137 , 135, 134, 131
820 DATA 141, 157, 138, 148 , 129, 156, 143 , 153, 151, 149
830 DATA 145, 8, 56, 40, 41 , 2, 34 , 24 , 19 , 14
840 DATA 18, 16, 22, 11, 5, 12, 26, 30, 9, 7
850 DATA 6, 3 13, 29, 10, 20, 1, 28, 15, :25
860 DATA 23, 21, 17, 0, 47, o, o, 0
870 END

ent input coding structure. Although
there are several "generic" typesetting
languages (e.g. CORA), virtually
every type or model of machine has its
own "custom" commands that are in-
compatible with most other machines.
Even identical machines sold to differ-
ent customers, or sold at different
times, may have subtle programming
differences that make it impossible to
get the same output for the same given
input coding! The problem is very simi-
lar to the problem encountered by
small computer users if they try to run
CP/M, CDOS, or SDOS software in-
terchangeably. Some versions are
upward-compatible, some are down-
ward-compatible, some are totally in-
compatible. Basically, this means that
any software written to send data from
a computer to a typesetter is going to
almost always be "one of a kind." This
also explains why there are so few com-
mercially-available programs to send
data from a CP/M based machine to a
phototypesetter. Table 2 lists some of
the commands available on a typical
phototypesetter, Mergenthaler Lino-
type Corporation's LINOTRON 202.
To list all of the commands available
would require a small book.

DIRECT CODE CONVERSION is the
easiest method. It simply involves
translating a file from ASCII to TTS.
The ASCII file already has all of the
codes in it that are required to tell the
typesetter everything it has to know,
and the conversion program inserts no
additional commands or formatting.
This program is fairly simple to write,
but is of little use to anyone who does
not know your ASCII to TTS conver-
sion codes and who is not familiar with
the input coding for your typesetter.

Listing 1 is a sample file that might be
used as input to a direct code conver-
sion program, and listing 2 is the actual
output produced by the typesetter.
Listing 3 is a program, written in
Microsoft BASIC, that will translate an
ASCII file into TTS and send the data
to a serial port. This program is just an
example, so some parts (most notably,
the serial port handshake routines)
have been left out.

Notice that the program keeps track of
which of the characters is upper or
lower case in order to send the ap-
propriate TTS shift code whenever
necessary. Notice also the routines to
check for special characters enclosed in
curly braces which cannot be generated
by a standard ASCII keyboard.

Many commercial typesetting services
offer this type of conversion with a
simplified version of the typesetter's
commands that is a bit easier to use, but
the typesetter commands still must be
entered into the ASCII file before it can
be converted.

Typesetting Conversion
Programs

Once the "low-level" problems in the
preceding sections have been dealt with
and (hopefully) neatly tucked away in-
to some simple driver routines to take
care of translating and transmitting
ASCII data to the typesetter, the "high-
level" software must be written. In
other words, you have the interface,
and now you have to tell your com-
puter how to arrange its data to "feed"
it. I've found that "feeding" programs
usually fall into 2 basic categories,
DIRECT CODE CONVERSION, and
WORD PROCESSOR CONVER-
SION.

WORD PROCESSOR CONVERSION
uses much simpler input files. In fact,
this conversion uses regular ASCII text
or word processor created files for its
input. For example, this article (which
was written with WordStar) could be
used as input to such a program. There
is no need to insert commands in the in-

Lifelines, April 198232

Listing 4 is a sample word processing
input file, and listing 5 is the output
produced by that file, after conversion.
The conversion program appears in
listing 6.

This program is the simplest form of
word processor converter, and could
be used to handle only simple para-
graphed text with headlines. Although
it could just as easily have been written
to recognize the start of a paragraph as
four or five spaces at the beginning of a
line, this program defines the start of a
paragraph as the first line after a single
blank line. Anything preceded by two
blank lines is treated as a "headline"
case.

hibitive, due to the very high cost of
retraining operators and reprogram-
ming or modifying existing input
equipment, so typesetter users are
often obliged to stick with the same
manufacturer just to avoid this extra
cost.

Interestingly, the CP/M operating sys-
tem has been at least partly responsible
in bringing about some of the changes
in standardization that have been
made. Perhaps forced to by the sheer
weight of the number of CP/M users
(or at least guided by it), some typeset-
ter manufacturers have begun offering
machines that are capable of running
CP/M, and others are looking very
closely at CP/M-based machines that
can front-end their products.

It is probably just a matter of time until
the typesetter manufacturers make
available all of the software discussed
here, along with a machine that will be
able to use it.

Although all of the hardware informa-
tion given here is factual (and in use at
CDP Corporation, my employer),
parts of the software information, and
the views given of the typesetting in-
dustry, are strictly my own opinion.
Virtually every Printer I know would
argue with at least a few of the things I
have said here, and I'm sure that all of
the manufacturers would disagree with
me about several of my observations,
too, but the ideas given here are well
tried and work very well in most cases.
Even if this isn't exactly what you need,
it should at least help you to under-
stand and expect some of the problems
that you might encounter when you in-
terface your computer to "the ultimate
printer."

put file because the conversion pro-
gram decides where and what any com-
mands should be and inserts those
commands automatically into the file
when it translates it to TTS and sends it
to the typesetter.

In order to insert commands, the con-
version program has to make certain
assumptions about the data it is trans-
lating. For example, it assumes a cer-
tain character size, font, etc. This
method of conversion is most useful
when the input files are "routine" data,
like newspaper stories and novels,
which are always in the same general
format (same size, spacing, etc.).

Unfortunately, word processor conver-
sion has its limits. Since the computer is
left to make all of the decisions about
how the typesetter is going to print the
data, the person who wrote the file has
very little say about how his or her file
will appear when it leaves the type-
setter.

Some simple commands are often
added to the conversion program to
solve this problem, but in general,
when you let the computer make deci-
sions about what parameters to use, it
will surely screw up somewhere,
sooner or later. For example, tabular
data (like columns of numbers in a
financial report, or a cross-reference
table) is very difficult to convert from a
word processing format to typesetting
commands because of the way that
most typesetters are programmed.
(Many typesetters ignore multiple
spaces, too.) In addition, there are
many other problems of the same
nature.

In all but the simplest cases, files to be
converted in this manner require some
form of "human intervention" before
they can be successfully typeset. For-
tunately, the simplest cases are the most
common. Here at CDP, we routinely
translate entire newspapers (except pic-
tures and advertisements) from ASCII
word processing files and send them to
the typesetters with no operator in-
volvement at all. (Many of the adver-
tisements fall into the "human inter-
vention" category because of their
"non-standard" requirements, like pic-
tures of giant hands pointing to a re-
duced sale price, or photographs of let-
tuce, etc.)

Most "high level" software is written
(cleverly enough) in some form of high
level language. We've used everything
from BASIC to PASCAL and C and
even assembly language. Of course
speed is essential, but the only thing a
language really needs to do the job is
the ability to communicate with what-
ever hardware interface is required to
drive the typesetter. This usually re-
quires the ability to do direct I/O. A
compiler is nice, but an interpreter is
ok. The ability to jump to machine
language subroutines and to link in
assembly language modules is handy,
too, since table look-ups and I/O are
best handled in machine code. Ob-
viously, it would be very difficult to
work with any language that couldn't
manipulate ASCII strings. It is also a
good idea to bear in mind that the less
cryptic the language and the more well
commented your program is, the easier
it will be to modify when you have to
make changes six months after you've
finished writing it.

Some Closing Remarks To
Cheer You Up If You Have
To Do This References

Stevenson, George A., Graphic Arts
Encyclopedia, Second Edition,
1979, McGraw-Hill

Mergen tha l e r L INOTRON 202
Operator's Manual, 1978,
Mergenthaler

Telephone Typesetting User's Manual,
1981, CDP Corp.

Hardy, David J., Fred Lasich, Sue
Hayman, et al., Emulating on the
202, 1978, CDP Corp.

(continued next page)

Manufacturers are slowly beginning to
realize the advantages of standardized
input coding, but little progress has
been made, perhaps because manufac-
turers are afraid that using a standard
input code would allow customers to
buy machines made by the competi-
tion. Currently, converting to a new in-
put coding scheme can be cost pro-

Lifelines, Volume II, Number 11 33

Listing 1
[P 1 OF 1 M 2 OL 1 2] Th i s i s a
s ample of a [F34]d i r ec t
code conve r s i on [F 1] f i l e .
No t i ce how eas i l y fon t s and
[A45P30] cha rac t e r [P 6]
s i ze s [P IO] can be changed .
This is the most ve r sa t i l e ,
but mos t d i f f i cu l t to use
me thod , because i t r equ i r e s
knowledge of a l l of t he
types e t t e r ' s commands.<

Listing 6

10 '
20 ' WPTOTTS - Translate an ASCII word processing file to TTS
30 ' and sends it to an output port
40 '
50 DIM A(128),STD(50),SOP(50),SOH(50)' Make room for the arrays
60 LINE INPUT "Enter ASCII file name:",A$
70 OPEN "I" ,1,A$
80 SHIFT=0:' Initialize SHIFT mode to UNSHIFT

90 ' First fill the arrays.
100 FOR X=0 TO 127
110 READ A(X)
120 NEXT X
130 X=0'
140 X=X+1
150 READ STD(X)
160 IF STD(X)<>0 THEN 140
170 X=0'
180 X=X+1
190 READ SOP(X)
200 IF SOP(X)<>0 THEN 180
210 X=0'
220 X=X+1
230 READ SOH(X)
240 IF SOH(X)<>0 THEN 220
250 NULLINE=0'
260 QUOTE=0'
270 IF EOF(l) THEN 1140
280 LINE INPUT #1,A$'
290 L=LEN(A$)'
300 NOTNULL=0'
310 IF L=0 THEN 350 z

320 FOR X=1 TO L'
330 IF MID$(A$,X,1)0" " THEN
340 NEXT X
350 IF NOTNULL=0 THEN NULLINE=NULLINE+1:GOTO 270' If null line, then increment
360 ' the null line ctr and do the next line.
370 IF NULLINE=1 THEN QUOTE=0:GOTO 560' 1 BLANK LINE preceeds a PARAGRAPH.
380 IF NULLINE>1 THEN QUOTE=0:GOTO 950' 2 BLANK LINES preceed a HEADLINE.

390 P=0' If not a special case, then send out
400 SHIFT=0' the STANDARD LINE prefix.
410 P=P+1
420 CHAR$=CHR$(STD(P))
430 IF CHAR$=CHR$(0) THEN 460
440 GOSUB 1220
450 GOTO 410
460 FOR P=1 TO L' Then send out the line,
470 CHAR$=MID$(A$,P,1)
480 GOSUB 1290
490 GOSUB 1220
500 NEXT P
510 CHAR$=CHR$(27)' Then send out an END-OF-LINE code.
520 GOSUB 1220
530 GOTO 250

READ THE ASCII TO TTS CONVERSION ARRAY.

Read the standard line prefix.

Read the start of paragraph prefix.

Read the start of headline prefix.Listing 2

This is a sample of a ©odte

©Mwmfetra file. Notice how easily

""'“ and charac-
ter sizes can be changed. This is
the most versatile, but most difficult
to use method, because it requires
knowledge of all of the typesetter’s
commands.

This is the BLANK LINE counter.
This is the OPENING QUOTE FOUND flag.

Get a line from the file.

<== MEANS LINE IS NULL
If line is 0 chars long, then it's NULL.
Or, if line is all spaces, it's NULL

NOTNULL=1 Z <== MEANS LINE IS NOT NULL

Listing 4

Thi s i s a s ample word
p roces s ing f i l e . No t i ce
that there are no commands
in this f i l e and that i t i s
a completely normal run-of-
the -mi l l word p roces s ing
f i l e . Word p roces so r
conversion techniques work
bes t on t h i s kind of f i l e ,
because t h i s f i l e has no
unusual requirements.

540 '
550 ' SPECIAL CASE: PARAGRAPH
560 P=0' First send out START OF PARAGRAPH prefix.
570 SHIFT=0
580 P=P+1
590 CHAR$=CHR$(SOP(P))
600 IF CHAR$=CHR$(0) THEN 630
610 GOSUB 1220
620 GOTO 580
630 FOR P=1 TO L' THEN SEND OUT THE LINE
640 CHAR$=MID$(A$,P,1)
650 GOSUB 1290
660 GOSUB 1220
670 NEXT P
680 ' Then send out all following lines until a blank line
690 ' is found. All lines until then are linked together by

700 ' changing the RETURNS to SPACES.
710 IF EOF(l) THEN 1140
720 LINE INPUT #1,A$' Get the next line.
730 L=LEN(A$)' See if it's blank.
740 IF L=0 THEN 900
750 N0TNULL=0
760 FOR X=1 TO L
770 IF MID$(A$,X,1)0" " THEN NOTNULL=1
780 NEXT X
790 IF NOTNULL=0 THEN 900
800 CHAR$=" "
810 GOSUB 1290
820 GOSUB 1220
830 FOR P=1 TO L
840 CHAR$=MID$(A$,P,1)
850 GOSUB 1290
860 GOSUB 1220
870 NEXT P
880 GOTO 710
890 ' Output a SPACE to link the previous line to the next line.

Listing 5

This is a sample word pro-
cessing file. Notice that there
are no commands in this file
and that it is a completely nor-
mal run- of-the-mill word pro-
cessing file. Word processor
conversion techniques work
best on this kind of file, be-
cause this file has no unusual
requirements.

Lifelines, April 198234

900 CHAR$=CHR$(27)
910 GOSUB 1220
920 NULLINE=1
930 GOTO 270
940 z

950 ' SPECIAL CASE: HEADLINE
960 P»0 z First send out the START OF HEADLINE prefix.
970 SHIFT=0
980 P=P+1
990 CHAR$=CHR$(SOH(P))
1000 IF CHAR$=CHR$(0) THEN 1030
1010 GOSUB 1220
1020 GOTO 980
1030 FOR P=1 TO L z Then send out the line.
1040 CHAR$=MID$(A$,P,1)
1050 GOSUB 1290
1060 GOSUB 1220
1070 NEXT P
1080 CHAR$=CHR$(27)' Then send out an END-OF-LINE code.
1090 GOSUB 1220
1100 GOTO 250
1110 '
1120 z DONE ROUTINE
1130 ' Send out a code to tell the typesetter that we've finished.
1140 CHAR$=CHR$(23)
1150 GOSUB 1220
1160 CHAR$=CHR$(10)
1170 GOSUB 1220
1180 END
1190 '
1200 ' SEND subroutine.
1210 ' Send out the character in CHAR$.
1220 P5=ASC(CHAR$)
1230 IF P5=127 THEN 1940
1240 OUT &H44,P5
1250 RETURN
1260 '
1270 z TRANSLATE subroutine.
1280 ' Convert CHAR$ to TTS and send out shift code, if necessary.
1290 GOSUB 1320:' TRANSLATE TO TTS AND GET SHIFT MODE
1300 IF SHIFTOCSH THEN SHIFT-CSH:TEMP$=CHAR$:CHAR$=CHR$(P1):GOSUB 1220:CHAR$=TEMP$
1310 RETURN
1320 '
1330 ' ASCII TO TTS TRANSLATION ROUTINE.
1340 z Enter:
1350 ' CHAR$ has ASCII character.
1360 z Exit:
1370 ' CHAR$ has TTS character.
1380 z CSH set to 0 if UNSHIFT, 1 if SHIFT, 2 if SUPERSHIFT.
1390 z P1=TTS shift character.
1400 CHAR=ASC(CHAR$)
1410 IF CHARM 27 THEN CHAR=CHAR-127
1420 C=A(CHAR)
1430 IF 0=192 THEN 1490
1440 IF C>=128 THEN 1540
1450 CSH=0
1460 Pl=62
1470 CHAR$=CHR$(C)
1480 RETURN
1490 C=C-192
1500 CSH=2
1510 Pl=37
1520 CHAR$=CHR$(C)
1530 RETURN
1540 C=C-128
1550 CSH=1
1560 Pl=54
1570 CHAR$=CHR$(C)
1580 RETURN
1590 '
1600 ' DATA for ASCII to TTS translation
1610 z

1620 DATA 0,0,0,0,0,0,0,23,0,0
1630 DATA 0,0,0,0,0,0,0,0,0,0
1640 DATA 0,0,0,0,0,0,0,0,0,0
1650 DATA 0,0,8,135,127,58,7,58,177,17
1660 DATA 163,35,58,58,25,19,57,209,45,59
1670 DATA 39,3,21,33,43,15,13,49,181,53
1680 DATA 0,0,0,173,58,134,178,156,146,130
1690 DATA 154,180,168,140,150,158,164,184,152,176
1700 DATA 172,174,148,138,160,142,188,166,186,170
1710 DATA 162,0,0,0,0,0,17,6,50,28
1720 DATA 18,2,26,52,40,12,22,30,36,56
1730 DATA 24,48,44,46,20,10,32,14,60,38
1740 DATA 58,42,34,0,0,0,0,0
1750 z

1760 ' The appropriate commands for the following prefixes
1770 z would be inserted in the following DATA statements
1780 ' according to whatever you wanted to do when each was
1790 ' encountered.
1800 z

1810 ' Data for STANDARD LINE prefix.

(continued next page)
Lifelines, Volume II, Number 11

Operating Systems

These operating systems are available
from Lifeboat Associates, except where
otherwise mentioned.

CP/M-80 for:
Apple II w /Microsoft BASIC 2.20B
Datapoint 1550/2150 DD/SS 2.21
Datapoint 1550/2150 DD/DS 2.21
Datapoint 1550/2150 DD/SS w/CYN 2.21
Datapoint 1550/2150 DD/DS w/CYN 2.21
Durango F-85 2.23
Heath /Zenith H89 2.2
iCOM 3812 1.42
iCOM 3712 w/Altair Console 1.42
iCOM 3712 w/IMSAI Console 1.42
iCOM Microfloppy (# 2411) 1.41
iCOM 4511/Pertec D3000 Hard Disk 2.22
Intel MDS Single Density 1.4
Intel MDS Single Density 2.2
Intel MDS 800/230 Double Density 2.2
MITS Altair FD400, 510, 3202 Disk 1.41
MITS Altair FD400, 510, 3202 Disk 2.2
Micropolis Mod I - All Consoles 1.411
Micropolis Mod II - All Consoles 1.411
Micropolis Mod I 2.20B
Micropolis Mod II 2.20B
Compal Micropolis Mod II 1.4
Exidy Sorcerer Micropolis Mod I 1.42
Exidy Sorcerer Micropolis Mod II 1.42
Vector MZ Micropolis Mod II 1.411
Versatile 3B Micropolis Mod I 1.411
Versatile 4 Micropolis Mod II 1.411
Horizon North Star SD 1.41
Mostek MDX STD Bus 2.2
Ohio Scientific C3 2.24
Ohio Scientific C3-B/74 2.24B
Ohio Scientific C3-C'(Prime)/36 2.24B
Ohio Scientific C3-D /10 2.24A
Ohio Scientific C3-C 2.24A
Sol North Star SD 1.41
North Star SD IMSAI SIO Console 1.41
North Star SD MITS SIO Console 1.41
North Star SD 2.23A
North Star DD 1.45
North Star DD/QD 2.23A
Processor Technology Helios II 1.41
by Lifeboat /TRS-80 Mod II 2.25C
by Cybernetics /TRS-80 Mod II 2.25

Hard Disk Modules
Description Version

Corvus Module 2.1
APPLE-Corvus Module 2.1A
KONAN Phoenix Drive 1.8
Micropolis Microdisk 1.92
Pertec D3000/iCOM 4511 1.6
Tarbell Module 1.5
OSI CD-74 for OSIC3-B 1.2
OSI CD-36 for OSI C3-C' 1.2
SA 1004 for OSI C3-D 1.1
SA 4008 for OSI C3-C 1.3

35

Listing 6 (continued)
1820 DATA
1830 '
1840 ' Da ta fo r START OF PARAGRAPH p re f ix .
1850 DATA
1860 '
1870 ' DATA FOR START OF HEADLINE p ro f ix .
1880 DATA
1890 ' END OF DATA
1900 '
1910 ' QUOTE PROCESSING ROUTINE
1920 ' These were added to conve r t ASCII QUOTE cha rac t e r s to
1930 ' the app rop r i a t e open ing or c lo s ing QUOTE marks in TTS.
1940 IF QUOTE=O THEN 2000 ' If no p r ev . quo te found , then a s sume OPEN QUOTE.
1950 QU0TE=0' E l se , a s sume this is a c lo s ing QUOTE.
1960 IF SHIFTOO THEN SHIFT=0:CSH=0:P5=62:GOSUB 1240 ' Te l l t ha t i t ' s c lo s ing .
1970 P5=17
1980 GOSUB 1240 ' TTS has only s ing l e quo te marks , so s end i t
1990 GOTO 1240 ' tw ice to make a double quo te mark .
2000 IF SHIFTO1 THEN SHIFT=1 :CSH=1 :P5=54 : GOSUB 1240 ' Te l l t ha t i t ' s open ing .
2010 QUOTE=1
2020 GOTO 1970
2030 END

Remember to renew if your subscrip-
tion began last May. You're about to
miss an issue.

If your subscription began last May
you've been notified that this is your
last issue. If you haven't responded, get
out that renewal form and drop it in the
mail right now with your payment. Or
get out your VISA or MasterCard and
call Lifelines/ The Software Magazine
Subscription Dept, at (212) 722-1700.
The address is: 1651 Third Ave., New
York, N.Y. 10028.

Renew

Printer Or Console From BASIC-80
Bob Kowitt

This worked beautifully on my computer with BASIC-80 Version
5.0. Unfortunately, when I tried it with BASIC-80 Version 5.1, I
realized that Microsoft's modification of BASIC-80 had moved
my pointer location. Evidently, finding this pointer had to be
done dynamically from the program to be fully transportable.

My original routine to do this was published in S100 Micro-
systems in the Mar/Apr 1981 issue and that's when I woke up to
another problem. Actually, I was awakened by several phone
calls and letters informing me that it didn't work. I was poking
one byte to change the pointer location within the same memory
page, since my CP/M BIOS had the console driver and the list
driver on the same memory page. When the routine was im-
plemented on a computer where the BIOS crossed a page bound-
ary between the CRT driver and list driver, the computer was
down and out for the count.

Modify again . . .

Of course! We need to find two bytes in the BIOS to be sure. Then
if we cross a page boundary, we must POKE two bytes into
BASIC-80. Since revision, I have transported programs to many
computers and have had no problems.

I held off using the BASIC-80 compiler BASCOM until chaining
was possible with COMMON variables but when that was avail-
able, new modifications in my printer /console selecting routines
were necessary. Since, with compiled programs, there is no longer
an interpreter pulling in pointers from CP/M, direct POKEs are
possible into the jump vector table.

To explain the routines I use (in the order that they should be us-
ed):

Line 30 - Determine whether the program is to be used compiled
or with the interpreter. (I am working on this to make it dynamic
also.)

Line 560 - Search BASIC-80 for the location of the pointers.
Lifelines, April 1982

I have been using Microsoft BASIC 5.x since it was first released
two years ago. I had been using North Star's excellent BASIC for
the three years before but I found the need to change, not only
because Microsoft had what I considered to be a much more
powerful language interpreter but, in addition, the new BASIC-80
allowed me to save the programs in a protected mode, to protect
my programming from the end user.

However, the change forced a sacrifice on me. I had to give up two
very convenient operations that were in North Star BASIC:

1) the multiple line user-defined function which operated in a
similar manner to the procedures in PL/I and other high level
languages, and,
2) the ability to choose at run-time whether to output to my
CRT or printer.

I am still waiting for Microsoft to remedy the first loss but, while
waiting, I decided to supply the second on my own. I found that
BASIC-80 reads the CP/M vector table at load time to find the
location of my CRT output routine and the LIST device output
routine. The BIOS itself is never modified. Then when the pro-
grammer uses the command LPRINT instead of PRINT,
BASIC-80 sends the output to the printer and not the CRT
terminal.

I then reasoned that if I could redirect the CRT output to the
printer by POKEing into the proper location of BASIC-80, 1could
accomplish my purpose under user control at run time.

Finding the location within BASIC-80 may be done using DDT or
SID to look for the location that contains byte two of the console
driver location and then a search of all locations found, to find
which one is followed by byte 1 of the console driver location in
Intel format. (When, oh when, will SID give us a multiple byte
search?) After finding the BASIC-80 location, I experimentally
POKEd the LST driver location into the CRT driver location and
. . . EUREKA!! the printer took off.
36

ting. Be sure you use this when you are finished printing to get
back control at the CRT.

TABLE is the location in the BIOS of the jump vector table for
warm boot. This is found by reading location 01H and 02H.

PLOC1 & PLOC2 are the location of the pointer to the LST
driver in the vector table.

CLOC1 & CLOC2 are the location of the pointer to the CRT
driver in the vector table.

Cl, C2,P1 & P2 are the pointers found by CLOC1, CLOC2,
PLOC1 & PLOC2, that are to be POKEd into BASIC-80.

Fl & F2 are the locations within BASIC-80 that have the pointer
to the CRT driver.

Line 380 - I have a form I use to outline any messages. This
routine centers the line and outlines it with asterisks (or anything
else that I might want).

Line 525 - Determine where you want the output sent. The
default output is CRT and after selecting the printer it will be
modified with Pl & P2.

Line 1060 - This line proved necessary because if you do a con-
trol C during the printout, the printing stops and you are left with
all output going to the printer, including the message that you did
a control C in a certain line. This can mess up your printing and,
in addition, any input through the keyboard is echoed only on the
printer, compounding the problem. Line 1060 polls the keyboard
after every line and if an "E" or "e" is found, will restore the con-
sole, end the printout and branch to a correction if you write one.
Put it in wherever you might think you would need it.

Line 620 - this is the meat and potatoes. If you are working in
the interpreter, it pokes the proper values into the BASIC-80
pointer location and output goes to the printer or CRT, as selected
previously. However, if you are using the program compiled (see
compile switch at the top), you will actually poke into the CP/M
BIOS and modify the console pointer there to point at the LIST
device.

Line 615 - is the recovery line whenever you want CRT display.
Go back and forth to provide interactivity in the midst of prin-

10 ' PRNCON.BAS 7 /1 /81
15
20 ' s e t compi ler or i n t e rp re t e r s
30 COMPILERS : INTERPRETERS
40 ****************************
45 DEF FNY$(X$)=CHR$(ASC(X$+" ") AND &H5F) ' uppe r ca se func t io i
50
135 GOTO 1000 ' t o s t a r t of program
140
215 ****************************
375 ' emphas ized cen t e r ing rou t ine
380 MK$="*" ' a l t e r de s ign as you wish
385 MS$=MK$+" H+MS$+" "+MK$
390 M$=STRING$ (LEN (MS$) , MK$) : T= (76-LEN (M$)) /2 : PRINT TAB(T) M$
395 GOSUB 405 ' t o normal cen t e r ing rou t ine
400 M$=STRING$(LEN(MS$) , MK$) : T= (76-LEN (M$)) /2 : PRINT TAB(T) M$: RETURN
405 T= (76-LEN (MS$)) / 2 : PRINT TAB(T) MS$; : RETURN 'Cen te r ing rou t ine

415 ' s e l ec t conso l e or p r in t e r
525 MS$=" (P) r in t e r or (C)onso l e output ?" :GOSUB 380 ' c en t e r ing rou t ine
530 INPUT " " , OT$
535 OT1=C1 : OT2=C2
540 IF FNY$ (OT$)="P" THEN OT1=P1 : OT2=P2
545 RETURN
550 ****************************
555 ' s ea rch for output byte
560 TABLE=(PEEK(2) *256)+PEEK(1)
565 PLOC1=TABLE+13 : CLOC1=TABLE+10
570 PLOC2=PLOC1+1 : ~LOC2=CLOC1+1
575 P1=PEEK (PLOC1) : C1=PEEK (CLOC1)
580 P2=PEEK (PLOC2) : C2=PEEK(CLOC2)
585 FOR 1=16600 TO 18000
590 IF PEEK(I)=C1 AND PEEK(I+1)=C2 THEN 600
595 NEXT
600 F IS : F2=I+1 : RETURN
6Q5 > ****************************
610 ' sub rou t ines for output cho ice
615 WIDTH 79 : IF COMPILER THEN POKE CLOC1,C1 : POKE (CLOC1+1) ,C2 :

RETURN : ELSE POKE F l , C l : POKE F2 ,C2 : RETURN ' enab le conso l e
620 WIDTH 132 : IF COMPILER THEN POKE CLOC1 , OT1 : POKE (CLOC1+1) , OT2 :

RETURN : ELSE POKE F1,OT1:POKE F2 , OT2 : RETURN ' enab le s e l ec t ed
ggg ****************************
1000
1003 • ******** START ********
1005
1008 PRINT "En te r a t e s t ph rase to be p r in t ed 10 t imes :

LINE INPUT PHRASES
1010 '
1020 GOSUB 525 ' s e l ec t output mode
1030 GOSUB 620 ' poke s e l ec t ed va lue
1040 FOR KS TO 10
1050 PRINT PHRASES
1060 S$=INKEY$ ' neve r use CTL C - t h i s po l l s for s top
1070 IF FNYS(S$)="E" THEN GOSUB 615 s END ' r e tu rns con t ro l to CRT
1080 NEXT
1090 GOSUB 615 ' r e tu rn cont ro l to CRT
1100 END

A Pseudo-LN KU Y Function For CBAS1C2
Bill Burton

CBASIC is a popular language which has been widely used to
create business or commercially oriented application software.
One of the most important criteria by which such products are
judged is the degree to which they have been 'idiot proofed'.
This rather unfriendly sounding term means nothing more than
writing programs in such a way that user errors, especially er-
rant keystrokes, do not cause programs to abort unexpectedly.
Whereas all programs should include appropriate error detec-
tion and recovery procedures, 'idiot proofing' becomes
especially crucial when the integrity of a valuable data base is
at stake.

Ironically, CBASIC programmers attempting to write serious
applications, have faced, and have probably become ac-
customed to, special problems which result from the way in
which CBASIC processes console input. A great many
manuals describing packages written in CBASIC include pro-
minent warnings about the possible consequences of entering
either control C or control Z. (These will abort program execu-
tion without closing open files). In fact, entering either of these
control characters is only dangerous if entry has been re-
quested by an INPUT statement. In effect this means that the

Lifelines, Volume II, Number 11

CBASIC INPUT statement should be avoided whenever possi-
ble. Code which allows the user to select a menu option pro-
vides an ideal example of when not to use the INPUT state-
ment. The reasons are twofold. First, there is no good reason
why a program should be allowed to abort accidentally from a
menu and secondly, an extra keystroke (CR) is required to ter-
minate the input. Consider the following menus:

ENTER - 1: TO UPDATE A FILE
2: TO SORT THE FILE
(OPTIONS 2 - 23)
24: TO EXIT TO CP/M

ENTER - A: TO UPDATE A FILE
B: TO SORT THE FILE
(OPTIONS C - W)
X: TO EXIT TO CP/M

The first of these approaches is adequate only if there will be
fewer than ten possible selections (not counting choice 0:). The
latter approach allows up to twenty-six selections, any of which
can be invoked by a single keystroke.

(continued next page)
37

For the sake of simplicity let us consider how to process only
three choices, A, B and C. The ideal solution is provided by
the INKEY$ command of Microsoft'S BASIC-80. (Note: a
similar command has been included in CB-80). BASIC-80
code to process three menu options using INKEY$ might ap-
pear as follows:
100 REM LINE 130 IS ONE LONG LINE

110 PRINT TAB(20) ’’ENTER OPTION (A,B,C)

120 A$=INKEY$
130 WHILE A$O”A” AND A$O”a” AND A$O”B”

AND A$O”b” AND A$O”C” AND A$O”c”

140 A$=INKEY$
140 WEND
The beauty of INKEY$ is that the program will do absolutely
nothing until the user has provided an acceptable response.
Notice the TAB statement in line 110. Trying to duplicate the
effect of the preceding code in CBASIC would be reasonably
simple, using the CONCHAR% statement, except in cases
where a TAB statement had been used to position the prompt

line. CONCHAR% will trap invalid entry; however, when TAB
statements are used, improper entry can easily corrupt the
placement of the prompt line and the position of the cursor.

The example which follows illustrates one approach to solving
this problem in CBASIC. An INKEY like function is simulated
which will reject all invalid keystrokes. The positions of the
prompt line and cursor remain unchanged with these excep-
tions: pressing the delete or backspace keys or their control
key equivalents will move the cursor backward one character.
A linefeed will move the prompt line. A carriage return will
cause the prompt line to be redisplayed and may be used to
restore the display when any of the other invalid keys (LF, BS,
DEL) have been pressed. It is important to note that the con-
sole width must be set to zero (infinite width) and that a CON-
SOLE statement must be issued immediately thereafter. The
TAB statement which one would normally use must be re-
placed by an equivalent defined function. You may wish to ex-
periment and observe the results obtained when these restric-
tions are not observed.

PRINT FNP.TABS; "B : TO ENTER NEW DATA”

PRINT FNP.TABS; "C: TO EXIT TO SYSTEM”

PRINT
100 PRINT FNP.TABS; ’’ENTER OPTION A ,B ,C : ” ;

110 GOSUB 1000

IF INKEY? = 13 THEN 100

IF INKEY? < 65 OR INKEY? > 67 THEN \

GOSUB 1100 : GOTO 110

ON (INKEY?-64) GOTO 120 ,121 ,122

120 CHAIN ’’MENU. I NT"

121 CHAIN ’’DATA. I NT”

122 STOP

REM =====================================

REM WHEN ANY LOWER CASE CHARACTERS HAVE

REM BEEN ENTERED, THE FOLLOWING ROUTINE

REM FORCES TRANSLATION TO UPPER CASE.

REM =====================================

1000 INKEY? = CONCHAR?

IF INKEY? > 64 THEN \

INKEY? = INKEY? AND 95

RETURN

REM =====================================

REM DO NOT DISPLAY INVALID CHARACTERS

REM N.B. LINE 1101 IS ALWAYS EXECUTED

REM =====================================

1100 IF INKEY? < 32 THEN \
PRINT CHR$ (32) ; CHR$ (8) ; CHR$ (32) ;

1101 PRINT CHR$ (8) ; CHR$ (32) ; CHR$ (8) ;

REM =====================================

REM HOW TO TEST SINGLE CHAR. ENTRIES IN

REM CBASIC, WHILE PRESERVING THE SCREEN

REM =====================================

REM =====================================

REM IN IT IAL IZE PSEUDOTAB AS VARIABLE T?

REM NOTE: TRUE PSEUDOTAB VALUE = T? + 1

REM IF T? = 19 THEN TRUE TAB VALUE = 20

REM =====================================

T? = 19

REM =====================================

REM B.8$ = 8 SPACES / B.32S = 32 SPACES

REM =====================================

B.8$ = " ’’
B.32$ = B.8$ + B.8$ + B.8$ + B.8$

REM =====================================

REM SET INFINITE CONSOLE WIDTH : 1 1 0H=0

REM CONSOLE STATEMENT BELOW IS REQUIRED

REM =====================================

POKE 11 OH, 0
CONSOLE

REM =====================================

REM DEFINE PSEUDO-TAB AS FNP.TABS

REM =====================================

DEF FNP.TABS = LEFTS (B .32S , T?)

REM =====================================

REM REQUEST ENTRY: ’A ’ , ’B ’ OR ’C ONLY

REM =====================================

PRINT
PRINT FNP.TABS; ’’ENTER : ’’
PRINT
PRINT FNP.TABS; "A: TO RETURN TO MENU" RETURN

38 Lifelines, April 1982

Features

8080 Assembler Programming
Tutorial: Other Instructions

Ward Christensen

If your computer has no device at-
tached to it which is capable of
generating interrupts, then you need
not even be concerned with these in-
structions.

When the 8080 is reset, interrupts are
automatically disabled. In order to run
a device using interrupts, they must be
enabled, with an El instruction.
Similarly, after an interrupt occurs, in-
terrupts are automatically disabled.
This prevents a second interrupt hap-
pening before the program is ready for
it. One interrupt routine may issue an
El when it is able to be interrupted, or
may wait until it is completely done
before issuing an EL The 8080 spe-
cifically ensures that one additional in-
struction is allowed to be executed
following the El, before interrupts are
actually enabled. Thus, an interrupt
routine frequently ends with:

El ;ENABLE
RET ;THEN RETURN

For example, a subroutine that reads a
byte of data from the disk might set
carry when it gets an end of file. Nor-
mally, ASCII files in CP/M are ter-
minated with an EOF character: 1A
hex. However, ED and some other
editors, allow an ASCII file to end
without any 1A characters. Thus, a
program which calls the disk read
subroutine, couldn't always check for
the 1A, unless the disk read subroutine
intentionally faked one up. It could
however, do a Jump Carry (JC) to test
for EOF. This makes the program
shorter, because each call to disk read
doesn't have to do a

There are five instructions which didn't
fit into the categories previously
covered. They are: NOP, HLT, STC,
El, and DI, which will be covered in
this section.

NOP

NOP gets its name from No OPeration.
The 8080 and Z80 value is simply 0.
NOP is useful to simply leave a byte or
more of room in a program, so that
some other instruction may later be in-
serted.

Another use of NOP is to "zap" out an
instruction. For example, if you suspect
a certain subroutine is causing pro-
blems, you might overlay the CALL to
it, which is three bytes, with three
NOPs.

HLT

CPI 1AH
JZ eofroutine

to test for end of file: instead it can
merely:

JC eofroutine

You will see use of this technique in the
upcoming programming examples.

I briefly mentioned HLT in section five,
the movement instructions. If you
could use the MOV instruction with an
operand of "M,M", it would generate
76 hex. Since such an instruction would
be meaningless, the pattern of 76 hex in
the 8080 and Z80, stands for HLT: halt
the processor.

HLT is not frequently encountered in
CP/M programming. There are sel-
dom times that you want to completely
stop execution. CP/M itself uses it, for
instance to "get your attention" to
signal an error when executing the
LOAD command. When a problem is
encountered in the HEX file, LOAD
prints an error message, then issues a
HLT. It is necessary to reset your com-
puter to get out of it.

STC

This concludes the 8080 instructions.
Next month, I'll discuss some of the pit-
falls of 8080 programming, and maybe
I can save you time, by keeping you
from making the same mistakes I did.
The next section will include some
useful subroutines, then finally a com-
plete CP/M programming example.

INTERRUPTS

An entire tutorial could be dedicated to
the subject of interrupt handling in the
8080. It would not be sufficient just to
cover the interrupt related instructions,
but to go into why they are needed, and
how they are used. In fact, virtually all
hobbyist microcomputer program-
ming in assembly language can be done
without the use of interrupts. For this
reason I avoid "confusing the issue" by
spending time talking about interrupts,
except to go over the two instructions
which control them:

The March issue was placed into the
mail on February 25th. If you had any
problem with the timeliness of this
issue, please call our Subscription
Department at (212) 722-1700, or write
to Lifelines/ The Software Magazine
Subscription Department, 1651 Third
Ave., New York, N.Y. 10028. We ex-
pect to place this issue, dated April
1982, into the mail around March 26th.
We will print each month the date of
the previous issue's mailing and would
appreciate your help in tracking the
deliveries.

Notice
El DISTC sets carry. It is most frequently us-

ed in subroutines which want to in-
dicate something to the caller of the
subroutine.

El stands for Enable Interrupts. DI
stands for Disable Interrupts.

Lifelines, Volume II, Number 11 39

Features
XLT86, A Review
And How To Minimize
8080 to 8086 Translation Grief

Kelly Smith

Listing 1'First there is a mountain, then there is
no mountain, then there is.. -Donovan

Digital Research provides the budding
assembly language programmer for the
new 8086 CPU based systems, an
[almost painless] means of converting
the mountain' of 8080 software to
usable 8086 assembly language form
. . . but not without some anguish in
the process.

It is my hope that you can minimize the
time required for conversion of your
CP/M-80 based applications, by the in-
sight gained through my own conver-
sion problems and subsequent solutions.

Careful Review of Your
8080 Assembly Language
Source Code

mov ex, Word Ptr PHYSEC ;get physical sector number

setsec: mov Byte Ptr FUNC, 11 ;BIOS Set Sector Funct ion

mov Word Ptr BIOS_DESC,cx ;pass sector # to BIOS descr ip to r

mov Word Ptr BI0S_DESC+2,0; dummy f i l l DX descr ip to r with zero

mov dx, (O f f se t FUNC) ; point to f unc t i on parameter block

mov c l , 50 ; l e t CP/M-86 Funct ion 50 do the work

i nt 224 ; t h i s is a BDOS CALL??? Amazing...

; more code f o l l ows , and f i na l l y . . .

dseg

; storage for 5 byte BIOS func t ion descr ip to r

FUNC rs 1 ; B I OS Funct ion Code goes here
BIOS_DESC rs 2 ;CX data goes here

rs 2 ;DX data goes here

First of all, carefully review your source
code for the 'undesirable' aspects of the
code. This means:

1-Absolutely no self-modifying code
can be allowed (as if this doesn't go
without saying, but some solutions
to problems can be best taken care of
by this method)! Why, you ask?
Well, the internal architecture of the
8086 has a six byte look-ahead' in-
struction buffer, that can acquire in-
struction sequences prior to its ac-
tual execution; meanwhile (six bytes
away), perhaps you are thinking
that your little l?yte fiddle' will ac-
tually occur when in fact, the code
has not been modified at all! This
can make for some interesting (and
hair-pulling) debug, because 'now-
you-see it, now-you-don't'! Also,
because of this same instruction buf-
fer, you cannot write code that will
assemble into (a t tempted) ex-
ecutable addresses that are within
six bytes of the end of a 'segment' ad-
dress. You have to code some very
large programs to do this one,
however.

Listing 2

FFFF = true equ -1 ; def ine true
0000 = fa lse equ not t rue ; def ine fa lse

FFFF = stdepm equ true ; standard CP/M
0000 = nstdcpm equ fa I se ; non-standard CP/M

i f stdepm
0100 org lOOh

end i f

i f nstdcpm
org 4200h
end i f

0100 C32601 beg in: J mP 1 agnaf

f

i f stdepm
0103 506C617920 db ’Play your cards r i gh t Honey and . . . $

end i f

0126 C30000 1 agnaf : J mP $-$

0129
»

end

Lifelines, April 1982
40

2-Conditionals based on the Carry Flag
response to the 8080 DAD instruc-
tion may cause bizarre results
because there is no equivalent in-
struction for DAD in the 8086 CPU
- only a simulation of the DAD in-
struction (and rather lengthy!).

3-Any reference to 'M' (memory
pointed to by register pair H and L,
for the 8080) takes on a whole new
aspect, due to the segmentation ad-
dressing used with the 8086. The
BX register (you know it as HL)
could be pointing to the local Data
Segment' or to any other segment
in memory, depending on the prior
state of the CS (Code Segment),
DS (Data Segment), or ES (Extra
Segment) registers. This 'bytes you
on the assembly' (heh, heh!) when
you're doing otherwise legitimate
things like attempting to get data
out of CP/M's disk parameter
block (of what use to be in only
one sixty four kilobyte chunk of
8080 addressable RAM), and the
data is actually some place in the
high segment 'boonies'! If you
aren't careful, your code will be
picking up trash data from just
about any memory segment but
the one you really want! Note, that
our old 8080 friend M' is actually
translated to an 8086 equate as
'Byte Ptr 0[BX]', and is read as
"pointing to the byte in RAM by
the low byte content of the BX
register (BL)". Study 'M' and its
r e l a t i onsh ip to the segment
registers closely - but then maybe
you have masochistic ideas about
using DDT86 . . .

4-Let me guess, the code you want
to translate examines address 1 (the
old CP/M-80 Warm Boot' vector)
and does direct BIOS I/O by calling
this address (with a vector offset) to
'short circuit' some internal features
of CP/M-80. Well, forget it! None of
our presumed address vectors are
accessible by this means when using
CP/M-86. Digital Research did pro-
vide the means to do it, however,
with a Direct BIOS Call (Function
50); but if you have this throughout
your existing 8080 source code,
count on a heavy session with your
favorite flavor of editor to set things
straight again. In Listing 1 see my
code for doing direct BIOS I/O.

5- Conditional assembly parameters
have a nasty way of just flat disap-

Lifelines, Volume II, Number 11

Listing 3

FFFF t rue EQU -1 ; de f i ne t rue
0000 fa I se EQU not t r ue ; def i ne f a l se

•
FFFF stdcpm EQU true ; s t anda rd CP/M
0000 nstdcpm EQU fa l se ; non -s tanda rd CP/M

0RG 100h

)T00 EB 23 beg in : JMPS I agnaf
•

)102 50 6C 61 79 20 79 DB 'Play your cards r i gh t Honey and . . . $
6F 75 72 20 63 61
72 64 73 20 72 69
67 68 74 20 48 6F
6E 65 79 20 61 6E
64 2E 2E 2E 24

0125 B1 00 1 agnaf : MOV CL,0
0127 B2 00 MOV DL,0
0129 CD E0

•
INT 224

END

Listing 4

0100 44 MOV B,H
0101 4D MOV C,L

0102 7D

; Sub t rac t DE

SUBDE : MOV

from HL

A,L
0103 93 SUB E
0104 6F MOV L,A
0105 7C MOV A,H
0106 9A SBB D
0107 67 MOV H,A
0108 C9 RET

0109 7D

; Negate HL

NEG: MOV A,L
01 0A 2F CMA
01 0B 6F MOV L,A
01OC 7C MOV A,H
01 0D 2F CMA
OWE 67 MOV H,A
01 OF 23 INX H
0110 C9 RET

0111 B7

; Sh i f t HL r i gh t one p l ace

ROTRHL: ORA A
0112 7C MOV A,H
0113 1F RAR
0114 67 MOV H,A
0115 7D MOV A,L
01 16 IF RAR
0117 6F MOV L,A
0118 C9 RET

(continued next page)
41

pearing from the newly translated
source code. I mean gonel

The latest public domain sorted direc-
tory display' program SD-42, is chock-
full' of TRUE/FALSE switches that
allow you to configure it to do
everything but pour coffee! Just as a
quick example, look at Listing 2, a por-
tion of assembled 8080 source code.
That little gem was derived from a ma-
jor software effort named Program-
ming Porno' by Mike Karas (must give
credit where credit is due), and essen-
tially demonstrates what is to follow
when given a touch by XLT86, shown
in Listing 3.

Well, not exactly what we had in mind
now, was it! And XLT86 takes other
'conceptual liberties', as with that
routine labeled 'lagnaf:' . . . but then
again, it looks as if it's a crude setup
waiting for an instruction modify
anyway!

Improving Coding
Efficiency

Listing 5
0100
0102

8A EF
8A CB

MOV
MOV

f

CH,BH
CL, BL

; Sub t rac t DE f rom HL

0104 8A C3 SUBDE: MOV AL, BL
0106 2A C2 SUB AL,DL
0108 8A D8 MOV BL, AL
01 0A 8A C7 MOV AL,BH
01 OC 1A C6 SBB AL,DH
01 0E 8A F8 MOV BH,AL
0110 C3 RET

; Nega te HL

0111 8A C3 NEG: MOV AL, BL
01 13 F6 DO NOT AL
0115 8A D8 MOV BL, AL
0117 8A C7 MOV AL,BH
0119 F6 DO NOT AL
01 1B 8A F8 MOV BH,AL
01 ID 9F LAHF
01 1E 43 INC BX
01 1F 9E SAHF
0120 C3 RET

; Sh i f t HL r i g t r b one j

0121 0A CO R0TRHL: OR AL, AL
0123 8A C7 MOV AL,BH
0125 DO D8 RCR AL,1
0127 8A F8 MOV BH,AL
0129 8A C3 MOV AL, BL
01 2B DO D8 RCR AL,1
012D 8A D8 MOV BL, AL
01 2F C3 RET

XLT86 will make every attempt to
translate your original source code 'to-
the-letter', where possible, sometimes
with inefficient results. Take for exam-
ple, the 8080 source in Listing 4, and the
translation in Listing 5. Well, sad but
true . . . it took twenty-five bytes of
memory for the 8080 code generation,
but forty eight for the translation to
8086 . . . gads! So how can we improve
upon this? Look at Listing 6, as we now
take advantage of the 8086 instruction
set, by 'hand coding' for efficiency.

Well, that's twelve bytes of code. If we
got rid of the returns (stupid to make
them subroutines!) we could save three
more bytes, decreasing the amount of
RAM required, and speeding up the ex-
ecution time. Your translation will be
'riddled' with garbage code similar to
this, if you don't 'hand code' portions
like this example.

Divide and Conquer

Listing 6

0100 8B CB mov cx ,bx

; Sub t rac t DX f rom BX

0102 1B DA
0104 C3

SUBDE: sbb
RET

; Nega te BX

bx , dx

0105 F7 D3 NEG: no t bx
0107 43 i nc bx
0108 C3 RET

»

; Sh i f t BX r i gh t one p l ace

0109 D1 EB
01 0B C3

ROTRHL: shr
RET

9

bx , 1

An additional aspect to consider before
attempting translation to 8086 code is
the code size that is to be translated.
You can expect that if your 8080 as-
sembler is going to generate anything
more than six kilobytes of code for an
eventual '.COM' file, that you will

Lifelines, April 198242

operation with DDT86 even though it
appears to be running properly from
what you see happening on the con-
sole. Any weird file I/O should be
double-checked with Ward Christen-
sen's DU program. I should know, as
my 'finally debugged' version of FIND-
BAD.A86 went through 'all of the mo-
tions' of working correctly; the only
problem was, that as each new file ex-
tent opened up for the [UNUSED].BAD
file bad sector group allocations, there
were no group numbers 'pumped' into
the directory. (Maybe that's why it's
called a 'Boob Tube'. Do not trust what
you see happening on that tube in front
of you!)

Conclusion

ing 20% left for you. Not bad I would
say, considering what you would go
through if the work had to be done
'from scratch'! The conversion of
FINDBAD Version 5.2 (Universal Ver-
sion) took me about forty hours, and
now happily checks out both double
density microfloppies and a 'Win-
chester' disk drive, both without know-
ing the 'personalities' of either. SD Ver-
sion 4.1 took half that time from the ex-
perience gained in translating FIND-
BAD, by getting the 'funnies' out prior
to translating.

have to partition your 8080 source code
into [hopefully] logical chunks' that
are targeted for less than six kilobytes.
XLT86 will not translate even moder-
ately large source files! What does this
mean to you from a conversion stand-
point? Back to your editor, only this
time you must equate 'externally
referenced' subroutine labels where
your partitioned source code JMP's,
CALL's or references RAM (LDA,
STA, LHLD, SHLD, STAX, etc.) out-
side of each partitioned 'module'. Once
partitioned and translated, then you
can either use the ASM86 pseudo-op
'INCLUDE', or concatenate the whole
mess back together again with PIP,
remove all the partition references, and
then assemble normally. 'INCLUDE' is
the nice way to go however, as you can
edit small portions of your new 8086
converted program as you confirm its
proper operation. Yes, confirm its

The key to effective translation time is
a careful review of your original '.ASM'
file; time is better spent there than on
the agonizing task of, re-edit, re-assem-
ble, debug, re-edit, . . .

Digital Research's XLT86 appears to do
about 80% of the job, with the remain-

Macros of the Month
Edited by Michael Olf e

The reader response to our squealings for submissions has been overwhelming, mind-boggling, and totally ne plus
ultra. The distinguished panel of macro judges was stymied, split and stumped. Only a tie could justly represent
the quality of these submissions. So thanks for the submissions, gentle readers, keep up the flood of macros, and
enjoy those below.

Mike Olfe

;PMATE Macro: JUSTIFY and UNDO

; Author: David Flory
;Written: Feb 23,1982
; Version: 1.0

;Both of these macros must be used in format mode to work.

;Macro to right jus t i fy text wr i t ten in format mode. The macro searches for
; l i ne s tha t don' t end in a <cr> (char 13) and need padding. In format mode,
;PMATE breaks l ines at spaces or hyphens. PMATE then converts the space just
; be fo re a word that would be in the margin column to a char 224 or 225
; (auto-indent) while i t converts a hyphen to char 226 or 227 (auto-indent). A
;converted space can be in the margin column while a converted hyphen cannot.
Consequent ly , l i ne s ending in a hyphen r equ i r e one l ess space of padding.
;@T/226 returns 1 for a converted hyphen and 0 for a converted space.

a ; s tar t at the beginning, the macro works down
[;Main loop

[; BEGIN Search loop
@t=0{%} ;IF eof THEN exit Macro

(continued next page)
Lifelines, Volume II, Number 11 43

;find the end of the current line
;IF <cr>THEN next line and continue Search
;IF it needs padding THEN Pad
;END Search loop
;look to see if it can be padded
;IF not, continue Search ELSE find end of line
;BEGIN Pad loop
;FOR number of spaces needed DO

;(find a place to put a space
;IF can't THEN repeat Pad ELSE insert a space

;)
;END Pad
;next line REPEAT Main loop

1-m
@t=13{nT}
@t/226+@x<@w{_}{nT}

1
e0s "N $
@e-{l~}{l-m}
[

@w-@x-(@t/226)

{
e0s *N $
@e{l-m }{32i}

}
-1]

;Macro to restore right justified text to free format mode. Blocks of spaces
;(presumably padded) in free format lines are stripped to single spaces
;leaving the obligatory double space after each period.

/
z ;start at the end, the macro works up
r ;Main loop

[;BEGIN Search loop
01-m ;backup to end of prior line
@c=0{%} ;IF beginning of buffer THEN quit Macro

@t=13{"}{_} ;IF<cr> THEN continue Search ELSE Strip

] ;END Search

[;REPEAT Strip loop
e0s $;find a block of spaces to strip
@e{_} ;IF can't THEN Search
mt ;tag the end of the block
e0s~N $;find its start
@e{_} ;IF can't THEN Search
@t=".{m} ;give periods their due
m#d ;leave one space and delete the rest
-m ;move onto space

] ;UNTIL can't strip anymore

] ;END Main loop

; SPLITMOD. MAC /L66 SPLIT SCREEN EDIT MACRO PMATE
; BY JOHN KANNAR 2/20/82

; SPLIT SCREEN EDIT MACRO FOR PMATE

; DISPLAYS CONTENTS OF THE TEXT BUFFER AND BUFFER 9 IN A SPLIT SCREEN
; MODE; WITH 9 LINES OF THE TEXT BUFFER ABOVE AND 9 LINES OF BUFFER 9
; BELOW; SEPARATED BY A DOTTED LINE.

; IT USES BUFFER 0 AS A WORK AND DISPLAY AREA FOR THE SPLIT SCREEN.

; IT USES BUFFER 1 AS A DISPLAY AREA FOR "HELP" INFORMATION.

; EDITING OF EITHER "BUFFER" IS POSSIBLE BY ISSUING A COMMAND.
; THEN TRACE MODE OR PMATE IS ENTERED,IN WHICH EITHER
; INSTANT COMMANDS MAY BE ISSUED OR INSERT MODE CAN BE ENTERED. JUST

Lifelines, April 198244

USE NORMAL INSTANT COMMANDS TO MODIFY THE WORK AREA ASSOCIATED WITH
EITHER BUFFER: ABOVE THE DOTTED LINE FOR THE TEXT BUFFER OR BELOW THE
DOTTED LINE FOR BUFFER 9. CAUTION: DO NOT MODIFY THE DOTTED LINE!
WHEN EDITING OF EITHER OR BOTH BUFFERS IS COMPLETED, IT IS NECESSARY
TO RETURN TO COMMAND MODE (IF INSERT MODE WAS ENTERED) AND TO
RETURN THE CURSOR TO THE "HOME" POSITION: THE "+" IN THE FIRST
POSITION OF THE DOTTED LINE WHICH SEPARATES THE 2 WORK AREAS FOR
THE TEXT BUFFER AND BUFFER 9. WHEN THE "ESC" KEY IS THEN PRESSED,
THE ACTUAL BUFFERS ARE UPDATED AND CONTROL IS RETURNED TO THE SPLIT
SCREEN COMPARE MODE.

GWARNING: THE SPLIT SCREEN EDIT ERASES ANY PRIOR CONTENTS OF BUFFERS 0 AND 1.
IT COMPARES THE TEXT BUFFER (ABOVE) TO BUFFER 9 (BELOW) .
QUIT OR CONTINUE (Q OR C)?$

@K=81[%] / QUIT IF "Q" IS INPUT
B1K r CLEAR BUFFER 1
B1E t AND READ HELP FILE
XISPLITMOD.HLP$ f INTO IT
BK r CLEAR BUFFER 0
0Y0 r INITIALIZE LINE POINTER FOR TEXT BUFFER
0V1 t INITIALIZE LINE POINTER FOR BUFFER 9
B0E r SET BUFFER 0 AS THE CURRENT EDIT BUFFER
:A Z @LV9 A @9K f ERASE ALL PRIOR CONTENTS OF BUFFER 0(THE WORK AREA)
BTEA @0L i POINT TO THE "CURRENT" LINE IN THE TEXT BUFFER
9B0D t AND MOVE 9 LINES TO THE WORK AREA
B0E
1+ ..

/ NOW DISPLAY DOTTED LINE IN THE WORK AREA

$ t

r

/

TO SEPARATE THE TEXT BUFFER DISPLAY FROM THE
BUFFER 9 DISPLAY (NOTE: THE + MARKS THE HOME
POSITION)

B9EA @1L r POINT TO THE "CURRENT" LINE IN BUFFER 9
9B0D r AND MOVE 9 LINES TO THE WORK AREA
B0E r SET THE CURSOR AT THE HOME POSITION ON THE DOTTED
-10L T r LINE AND DISPLAY THE PROMPTING MESSAGE

G
r

SPLIT SCREEN EDIT
ENTER THE DESIRED COMMAND (OR H FOR HELP)$

@K=12[BTE %]
r

r <CR> EXITS FROM COMPARE
@K=82[-1VA1] r "R" BACK 1 LINE IN BUFFER 9
@K=67[+1VA1] ! "C" FORWARD 1 LINE IN BUFFER 9
@K=69[-8VA1] t "E" BACK 8 LINES IN BUFFER 9
@K-88[+8VA1] t "X" FORWARD 8 LINES IN BUFFER 9
@K=89[-1VA1 -1VA0] r "Y" BACK 1 LINE IN BOTH BUFFERS
@K=66[+1VA1 +1VA0] f "B" FORWARD I LINE IN BOTH BUFFERS
@K=84 [-8VA1 -8VA0] t "T" BACK 8 LINES IN BOTH BUFFERS
@K=86[+8VA1 +8VA0] r "V" FORWARD 8 LINES IN BOTH BUFFERS

SPLITMOD. MAC /L66 SPLIT SCREEN EDIT MACRO FOR PMATE

@K=73[-1VA0] ; " I "
@K=77[+1VA0] ; "M"
@K=85[-8VA0] ; "U"
@K=78[+8VA0] ; "N"
@K=65[0V1 0V0] ; "A"

BACK 1 LINE IN THE TEXT BUFFER
FORWARD 1 LINE IN THE TEXT BUFFER
BACK 8 LINES IN THE TEXT BUFFER
FORWARD 8 LINES IN THE TEXT BUFFER
BACK TO START OF BOTH BUFFERS

(continued next page)
45Lifelines, Volume II, Number 11

@K=90[BTE Z @LV0 -9VA0 B9E Z @LV1 -9VA1 B0E]
; "Z" FORWARD TO END OF BOTH BUFFERS

@K=72[B1E G PRESS ANY KEY TO RETURN TO SPLIT SCREENS B0E]
; "H" DISPLAYS THE "HELP" INFORMATION

@K<35 JA ; FOR ANY OTHER CHARACTER EXCEPT UPDATE WORK AREA
@K>35JA ; ENTERS THE SPECIAL SPLIT SREEN EDIT MODE,BY
? ; USING THE TRACE FUNCTION OF MATE AND PMATE. NOTE

; ALSO THE PROMPTING MESSAGE WHICH WILL APPEAR IN
; THE COMMAND AREA OF THE SCREEN DURING TRACE MODE:

INSTANT COMMANDS AND "INSERT" MODE MAY BE USED TO MODIFY EITHER BUFFER:

THEN RETURN CURSOR TO THE HOME (+) POSITION AND TO "COMMAND" MODE
AND ONLY THEN PRESS THE ESC KEY TO CONTINUE

,-UPON RETURN FROM TRACE MODE (OPERATOR KEYS "ESC'KEY)

BTE A @0L 9K ; ERASE ORIGINAL 9 LINES IN THE TEXT BUFFER
B03 @LV9 A (?9BTD ; AND INSERT THE UPDATED LINES FROM THE WORK AREA
B93 A @1L 9K ; AND DO THE SAME THING FOR THE BUFFER 9 UPDATES
B0E Z (@L-@9-l)V8 (-08)V7 @7L @8B9D
07L ; FINALLY, RESTORE THE CURSOR TO THE HOME POSITION
JA ; AND UPDATE THE WORK DISPLAY FOR COMPARE MODE

- --■ ■------------ --

k l
1* _■ ■ VWJte _■ w ___

A Patch For WordStar On The Superbrain
Reported by Todd Katz and John Leroy

One of the nicest features of WordStar is its comprehensive
INSTALL program, which allows the user to tailor the word
processing package to both his terminal and printer. But one
of the bad things about this feature is that it doesn't always
seem to work quite right; this is the case with the Superbrain.

But 'Brain users need not despair. Where there's a problem
there is [sometimes] a patch. In this case the user should "in-
stall" the program, selecting the printer and communications
protocol after selecting the " + " terminal choice that is
allocated to the Superbrain.

Then the question is asked: are modifications to Superbrain
now complete? The answer is NO!

At this point the user is introduced to the WS patch program
which asks the location in operating system to be changed.
You respond with the location. The program confirms your
choice and tells you the single hex value in that particular
location.

Here is a typical session:

LOCATION TO BE CHANGED (0-END):
User answers: 264
The program responds:
ADDRESS: 0264H OLD VALUE: C3 NEW VALUE:
Naturally you fill in the blank.

If you don't fill in the blank the value will be unchanged and
the program will tell you the content of the next byte of
operating system. If you answer with a 0 you will be given an
opportunity to end the session.

As far as the Superbrain is concerned there is tailoring to do in
three locations:

Location #1 Location #2
02A4 C3H

0264 C3H etc. E0H
02H
C3H
F4H

0265
0266

10H
03H

02H

Location #3 for the Superbrain DOS 3.0
Beginning at location 2E0 insert the following order of
changes in hex:

CD,F4,02,3D,CD,F5,02,21,52,E2,3E,33,BE,C0,3E,FF,
32,18,E5,C9,AF,21,34,E4,06,18,77,23,05,C2,FA,02,
21,00,00,22,00,E4,22,14,E4,22,16,E4,22,12,E4,C9,EB,
C3,0C,03
Here's the sequence for the Superbrain 3.1 DOS

CD,F4,02,3D,CD,F5,02,21,52,E2,3E,33,BE,00,3E,FF,
32,lD,E7,C9,AF,21,34,E4,06,18,77,23,05,C2,FA,02,
21,00,00,22,00,E4,22,14,E4,22,16,E4,22,12,E4,C9,EB,
C3,0C,03

And here's the sequence for the Superbrain 3.3 DOS

CD,F4,02,3D,CD,F5,02,21,52,E2,3E,33,BE,00,3E,FF,
32,20,E7,C9,AF,21,34,E4,06,18,77,23,05,C2,FA,02,
21,00,00,22,00,E4,22,14,E4,22,16,E4,2212,E4,C9,EB,
C3,0C,03
When you have finished, input a "0" (but not the quotes) and
confirm the terminal and printer selections. At this point WS
should be installed and you can forget about the INSTALL
and WSU ".com" files.

One final note: this does not assume that some of the fancy
operating systems being used with the 'Brain will work with
this sequence. If all else fails try some of the other terminal
choices. The IBM 3101 works rather well on some models.

Lifelines, April 198246

Volume 79 and Comments

CP/M Users Group

Volume 79

DESCRIPTION: MODEM programs for PMMI, SMARTMODEM, Serial I/O.
Latest versions as of March 1, 1982.
Digital Research "MAC" macro assembler required.

NUMBER SIZE NAME COMMENTS

CATALOG.079 CONTENTS OF CP/M VOL. 079

FOR THE Potomac Micro Magic Inc (PMMI)
MM-103 MODEM (also serial I/O):

079.1 16K MODEM7.DOC Documentation for MODEM 7 and higher.
Originally from CP/M UG Volume 47.

079.2 14K MODEM7.LIB MACLIB file for use with MODEM741.ASM.
079.3 66K MODEM741.ASM Assembler source for MODEM version 7.41.079.4 10K MODEM741.COM Object code of above program.
079.5 4K MODEM741.SET Patching instructions for MODEM741.COM.
079.6 IK MODEM7X.BUG Bug report.

FOR THE DC HAYES SMARTMODEM:

079.7 85K SMODEM37.ASM Assembler source for SMODEM version 3.7079.8 26K SMODEM37.DOC Documentation for the above program.

Comments
The new CPMUG volume features the latest versions of two
modem programs, with significant enhancements. The sum-
mary offered here is skeletal, but the documentation on
Volume 79 itself is quite exhaustive.

MODEM7 uses the file transfer routines written by Ward
Christensen in his CP/M file transfer program and is com-
patible with his program in single file transfer mode. Multi-
file transfers are only possible between two systems running
MODEM7.

This program has three functions:

1 - Communications. The program may emulate a terminal
or echo data back to sender (act as a computer). Only one
computer may be in the echo mode at one time. It's useful if
you wish to communicate with somebody running the ter-
minal portion of the program.

2 - Program transfer. While in Terminal mode, you can go

into File Transfer mode. This will allow you to send the con-
tents of an ASCII file over the modem. This routine does no
error checking and there are no protocols specified between
this program and the receiving computer other than that it
should be ready to receive data via the modem. Using the a
secondary option, more than one file and ambiguous file-
names may be transferred.

3 - Modem control (for PMMI Modem). These commands
let you set the baud rate, establish ANSWER or ORIGINATE
modes, dial a phone number, and perform other necessary
functions.

SMODEM37 was originally written by Ward Christensen,
later updated by Jim Mills and Mark Zeiger. It is for 8080 or
Z80 CPU's, CP/M-80 2.X, and an external Hayes' Smart-
Modem. This version 3.7 includes significant enhancements
to earlier versions. It has some special features, such as "auto-
dial", which allows you to automatically dial numbers from
several directories.

Lifelines, Volume II, Number 11 47

Features

Bit Manipulation In PL/I-80
Michael J. Karas

The PL/I-80 programming language provides the program-
mer with a powerful high level language environment in
which to develop sophisticated applications software for vir-
tually any task that small computers can accommodate.
Through practical experience I have found that one of the
many data types available within the language is especially
useful for data handling in controller or utility environments.
The "BIT" data type allows a PL/I-80 program variable to
assume the attributes of data in the lowest level format
available within a computer and its associated memory
system. This technical piece will describe the PL/I-80 bit
variable data types in Part 1, showing examples of one pro-
gram using them.

Bit data is a declared variable, consisting of a string of binary
digits (ones and zeros), treated as a string. In other words, the
PL/I-80 bit string is handled in a manner similar to the con-
ventional programming language character string. The dif-
ference is that each bit string digit can only assume one of two
values, binary one or binary zero. In addition each bit string
digit only uses one bit of memory for storage. Bit strings in
PL/I-80 can have a length from one (1) to sixteen (16) digits.
To establish a variable name as a bit string it is declared as
follows:

76543210<- Hardware
memory byte
bit numberMemory Address

Memory
Address + 1

10000000

01100001

Note how the string shorter than 16 bits is padded on the right
with binary zero digits to fill out the two byte memory
storage allocation. Note as stated above that the position
number nine is stored in the lower numbered byte of memory.

Bit string constants are denoted in the PL/I-80 programming
language as quoted strings of ones and zeros. The above ex-
ample is written in PL/I syntax as like:

'0110000113

where B denotes that the string is a bit string as opposed to a
character string. An assignment statement can set a variable
to a bit string convenience simply as:

BITSTR = '0110000113;

The PL/I-80 compiler permits a certain degree of notational
convenience for the expression of bit string constants. Alter-
nate bases other than binary may be used. The normal letter
B is followed by a digit from 1 to 4 to achieve data expression
in base 2 (B or Bl binary format), base 4 (Bl format), base 8
(B3 octal format), or base 16 (B4 hexadecimal format). The
characters or digits used in the expression of the string value
must be valid for the base specified.

DCL BITSTR BIT(12);

This makes "BITSTR" a variable that is a string of binary
digits 12 long. Bit string variables are stored in memory ac-
cording to the following rules for PL/I-80. If the declared
length for the string is from 1 to 8 digits, then one byte of
storage is used for the variable. If the length is from 9 to 16
bits, then two bytes are allocated for the variable. Bit strings
are left adjusted toward the left within the memory bytes
allocated if the string length is less than a full byte (8 bits) or
less than a full word (more than 9 but less than 16 bits). The
bit position numbering for a bit string starts at 1 and con-
tinues up to a number equal to the declared length of the
string. The following gives a programmer view of a BIT(9)
string:

Base Format Allowable digit values
B or Bl 0 and 1

B2 0,1,2 and 3
B3 Oto 7
B4 0 to 9, and A to F

The following chart shows several examples of the alternate
base notation and gives the equivalent "normal" base
representation.

'1010'Bl is the same as '1010'B
101032 is the same as '010001003
'01633 is the same as '0000011103
10134 is the same as '0001000000013
'A5'B4 is the same as 101001013

The short PL/I-80 program in Listing 1 presents an interesting
example of simple bit manipulation. The function provides
no real productive data processing but allows description of a
number of bit functions.

Bit Number: 123456789

0 1 1 0 0 0 0 1 1

Lastly, for reference, it is important to note that bit strings of
two bytes in size are stored in computer memory with the
lower addressed memory byte corresponding to the higher
numbered string bit positions. The above example BIT(9)
string is stored in memory as follows:

Lifelines, April 198248

using bit string BITA starting at bit position 5 for 4 bits of
length.

The function may be used on either side of an assignment
statement . On the left it means to replace the correspondingly
designated bit positions with the expression on the right. The
SUBSTR function on the right side on an assignment state-
ment indicates to return the bit string value indicated by the
starting position and length. The SUBSTR function is
generally used within the language syntax to move around
'pieces and parts" of bit strings. Note that it is the only real
way to dissect a bit string in SUBSET G type PL/I like the ver-
sion being described here.

After the first SUBSTR statement the memory map for BITA
and BITB becomes:

program operation follows.

HEXBIT (1) 1010
HEXBIT (2) 1011
HEXBIT (3) 0100
HEXBIT (4) 0001
1011000010100000
0001000001000000
1011101010100000
FINAL 1011101000010100

The initial memory space allocation for the above program
example for the HEXBIT array consumes four bytes of
storage, one byte for each BIT(4) element. Remember that
each time an individual bit string is less than 8 bits, a full byte
is used. The memory image for HEXBIT after the four assign-
ment statements place values in each array element is:

76543210 *- Hardware memory
byte bit number

BITA POSITIONS 9-16

BITA POSITIONS 1-8

BITB POSITIONS 9-16

BITB POSITIONS 1-8

10100000

10111010

01000000

00010000

Memory Address

Memory Address + 1

Memory Address 4- 2

Memory Address 4- 3

*- Hardware memory
byte bit number

HEXBIT(l)

HEXBIT (2)

HEXBIT(3)

HEXBIT(4)

76543210

10100000

10110000

01000000

00010000

Memory Address

Memory Address -I-1

Memory Address 4- 2

Memory Address 4- 3 The final version of the memory image that is printed follow-
ing the text string TINAL' looks like this:

The two pointer assignment statements that follow set
memory pointer variables "P" and "Q" to Memory Address
and Memory Address + 2 respectively. Since declared
variables BITA and BITB are based variables, their location
in memory is dependent upon the values of pointers P, and Q
respectively. This produces the effect of overlaying the
storage allocations for BITA and BITB variables directly over
the memory where the HEXBIT array is stored. The overlay
mechanism allows the programmer to manipulate storage in
alternate ways depending upon the declared type for the
variable name used to reference the overlay data area. The
above memory map becomes as follows for reference to BITA
and BITB variable names.

76543210 <- Hardware memory
byte bit number

BITA POSITIONS 9-16

BITA POSITIONS 1-8

BITB POSITIONS 9-16

BITB POSITIONS 1-8

00010100

10111010

01000000

00010000

Memory Address

Memory Address 4-1

Memory Address 4- 2

Memory Address 4- 3

So much said about that example. For newcomers to PL/I-80
that small program really packs a lot in a few statements.

A short discussion is pertinent, concerning the means avail-
able in the PL/I-80 language for printing out bit strings with
the PUT EDIT statement.

If BITA = '1011101000010100'B as shown in the above exam-
ple then the following PUT statements will have the results
shown:

1) put edit(bita)(col(l),b);
/* b format floats to string length */

prints - 1011101000010100

2) put edit(bita)(col(l),b(16));
/* b(16) specifies binary field of 16 print positions. */

prints -> 1011101000010100

3) put edit(bita)(col(l),b4(4));
/ * b4(4) specifies hex format printing with 4 print positions * /

prints -► BA14

Additional print formatting options include B2(n) for n print
positions of base 4 print format and B3(n) for n fields of octal
format printing. This feature means that for programmers us-

(continued next page)

76543210 Hardware memory
byte bit number

BITA POSITIONS 9-16

BITA POSITIONS 1-8

BITB POSITIONS 9-16

BITB POSITIONS 1-8

10100000

10110000

01000000

00010000

Memory Address

Memory Address 4-1

Memory Address 4- 2

Memory Address 4- 3

The statement:

put edit(bita,bitb)(col(l),b,col(l),b);

results in binary base console printout of the first two printed
lines of ones and zeros shown above.

The memory map changes for each additional assignment
statement. The function "SUBSTR" referenced here means

substr(bita,5,4)

Lifelines, Volume II, Number 11

ing PL/I there is usually no need to convert internal bit strings
to ASCII format representation because the PUT EDIT
part of PL/I will do it for you.

Next month I will present another example, and then finally
present an enhancement package of assembly language
routines that give more bit processing power to the basic
language capabilities.

Product Status
Reports

New

Listing 1
Versions
CBS
Version 1.33

This new version contains modifications required by a new
companion product, THE FORMULA. The FILES file is no
longer required in this version; related information is now
stored in the actual file.

b i+s : proc opt ions (ma i n) ;
de I

hexb i t (4) b i+ (4) ,
bi+a b i+ (16) based(p) ,
bi+b b i+ (16) based(q) ,
(p ,q) po in te r ,
i bin f ixed(1 5) ;

/ * ass ign values to elements of hexb i t a r ray * /

hexb i t d) = ’ 1010 'b ;
hexb i t (2) = ’ 101 1 ' b;
hexb i t (3)= ' 0100 ’b ;
hexb i t (4)= ’0001 »b;

/* f i x po in te r s to base s torage a l l oca t i on for
b i t a over hexB i t d) and hexb i t (2) and also
put b i t b s torage al l oca t i on over
hexb i t (3) and hexb i t (4) . * /

p=addr (hexb i t (1)) ;
q=addr (hexb i t (3)) ;

/ * p r i n t out the con ten ts of hexb i t ar ray * /

do i=1 to 4;
put editC’HEXBIT (’ , i , ') ’ , hexb i t (i))

(col (1) , a , f (1) , a , x (1) , b) ;
end;

/ * ou tpu t b i t pa t te rns of b i t a and b i t b
over I ay s t r i ngs * /

put ed i t (b i t a , b i t b) (col (1) , b , co l (1) ,b) ;

/ * move the four bi t (4) e lements of the ar ray
in to a packed format w i t h i n
the b i t a va r i ab le *7

subs t r (bi t a , 5 ,4) = subs t r (bi t a , 9 ,4) ;
put ed i t (b i t a) (col (1) , b) ;
subst r (bi ta , 9,4) = subs t r (bi tb , 1 ,4) ;
subs t r (b i t a , 1 3 , 4)=subs t r (b i t b , 9 ,4) ;
put ed i t (’F INAL' , b i t a) (co l (1) , a , x (1) , b) ;

end b i t s ;

Microsoft COBOL
Version 4.6

With this new release will be a new version of L80; called
LD80 (L80 revision 3.54), it uses disk space rather than the
memory to build the program image. This should ameliorate
the size limitations which occurred with L80.

In addition, this update includes the following enhance-
ments:

1-Runtime routines which generated INDEXed files have
been revised and generate files with a new format; this
feature is designed to speed the processing time required
for file organization.

2-The multiplication algorithm has been sped up.
3-The runtime library has been made into a common run-

time system, to speed up linking and to allow larger pro-
grams to be linked. Program chaining should improve and
programs should take up less disk space.

4-An interactive symbolic debugger called DEBUG.REL has
been added.

5-Conditional statements (and IF statements) may now
reside within IF statements.

6-When an OPEN EXTEND is performed on a non-existent
SEQUENTIAL or LINE SEQUENTIAL file, COBOL
creates the file, rather than reporting an error.

7-A RELATIVE KEY may now be a numeric field with
USAGE DISPLAY.

8-A RELATIVE or INDEXED organization file detected as
possibly damaged may be updated, if a file status item is
defined. The file status item is set to 91 upon opening; if no
file status item is defined, a DECLARATIVES section will
be performed, or a runtime error will be reported.

9-The absence of a DELIMITED BY clause in an UN-
STRING statement is now diagnosed.

Lifelines, April 198250

10-The presence of an OPEN EXTEND statement for a file
with RELATIVE or INDEXED organization is now diag-
nosed.

11-The compiler diagnoses the presence of a READ statement
in a format incompatible with its ACCESS MODE.

12-The definition of file status items as two-byte alphanu-
meric fields is now enforced.

13-An AFTER (BEFORE) ADVANCING clause in a WRITE
statement to a disk file is now diagnosed.

14-Relocatable object files are now smaller, because the com-
pile no longer emits temporary global symbols to them.

15-New entry points have been added to CRT drivers.
16-COBOL syntax for the DIVIDE statement has been re-

vised to reflect ANSI standards.
17-GO TO statements which have been ALTERed and which

reside in an independent section are reset to their original
designation when the section is reloaded.

18-EXIT PROGRAM is executed as an EXIT statement if it
occurs in a main program.

19-The syntax of the header statement conforms to the ANSI
standard; an empty USING list in the PROCEDURE DI-
VISION header is not required for subprograms without
parameters.

20-The first segment of a program may be independent.
21-Source text may follow a COPY statement on the same

source line.
22-Conforming with the ANSI standard, there is a new syn-

tax to replace the alphabet-name clause of the SPECIAL-
NAMES paragraph in the ENVIRONMENT DIVISION.

23-FIPS flagging can be specified in the command line to the
compiler by using the F switch.

24-The V switch may be used in the command line to the
compiler; it changes the meaning of USAGE COMP , so
that it is interpreted as USAGE DISPLAY.

ANNOUNCING
THE FOX & GELLER

dBASE II
PROGRAM

GENERATOR!
QUICKCODE™

Now, without any programming, you
can create these in seconds:

* DATA ENTRY PROGRAMS
* DATA RETRIEVAL PROGRAMS
* DATA EDIT/ VALIDATION PROGRAMS
* MENUS
* dBASE FILES
INTRODUCING FOUR NEW DATA TYPES:

DATE • DOLLARS • TELEPHONE
• SOC. SEC. NO.

With QUICKCODE, you can have your program,
but you don’t have to write it. So, you can do
things like knocking out an entire accounting
system over the weekend! And QUICKCODE in-
cludes a powerful new version of our popular
QUICKSCREEN™ screen builder, so you will put
together screens and reports that’ll dazzle even
the most skeptical (you can even use Wordstar™
to set up your screen layouts).

you MUST SEE IT TO BELIEVE I t
And is QUICKCODE EASY TO USE? You never
saw anything so easy. You don’t have to know
how to program. You don’t even have to answer a
lot of questions, because there aren’t any!

QUICKCODE $295
ALSO FROM FOX & GELLER

QUICKSCREEN
Microsoft BASIC version $149
CBASIC version 149
dBASE-lI version 149

dUTIL dBASE utility 75

Fox & Geller Associates
P.O. Box 1053

Teaneck, NJ 07666 (201) 837-0142
dBASE-lI TM Ashton-Tate

Wordstar TM Micropro Int’I

The following 4.01 bugs have been repaired:

1-The first few bytes of the CRT driver are no longer
destroyed when a subprogram returns.

2-INDEXED files in a SORT statement's USING or GIVING
list can now be used.

3-A MOVE of a data item to a justified field shorter than the
source field no longer destroys data following the destina-
tion field.

4-COMP-3 subscripts are now converted correctly.
5-Error messages no longer result when a program contains

consecutive sections with the same segment number.
6-Random value is no longer used as a prompt character in

the SCREEN SECTION.
7-The P switch now works, and allocates 100 bytes of addi-

tional stack space for each switch in the command line.
8-When RELATIVE organization specifies a key not in the

file, an error message is no longer returned; runtime now
searches for the existence of a higher-valued key.

9-After an error return from an OPEN statement, some-
times the program would abort; this has been fixed.

10-The first two bytes of WORKING STORAGE are not now
destroyed by overlay loading.

11-Large COBOL programs containing overlays can now be
linked.

12-A scaled numeric item can now be correctly MOVEd to an
alphanumeric item.

(continued next page)
Lifelines, Volume II, Number 11 51

Microstat
Version 2.08

This update features some minor speed improvements on
several programs. Hypergeometric has been fixed for cases
when the sample is less than possible occurrences. Now step-
wise multiple regression prints out the proper variables.

Sorry But. . .
We must raise our prices. Lifelines/ The Software Magazine
will begin its third year this June, and as we've grown, so have
our expenses. As of June 15th, the following new prices will
be in effect:

U.S., Canada, and Mexico: $24.00 for twelve issues
All Other Countries: $50.00 (air delivery)

So you June 1981 subscribers, send in your renewals. Back
issue and dealer prices will remain the same.

T/MAKER II
Version 2.5.2

This version corrects a minor bug in the Tally function.

Bugs

Change of Address
Please notify us immediately if you move. Use the
form below. In the section marked “Old
Address”, affix your Lifelines mailing label — or
write out your old address exactly as it appears
on the label. This will help the Lifelines Circulation
Department to expedite your request.

New Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Lifeboat CP/M-80 For The TRS-80 Model II
Version 2.25C

The READ-ME.DOC file defines 'set inverse video" and
"reset inverse video" incorrectly the second time through.
The first description (which follows) is correct.

Decimal Hex
= 27,41 IB,29
= 27,40 IB,28

SET INVERSE VIDEO
RESET INVERSE VIDEO

FORTRAN-80
Version 3.43

Linking Named Common does not work properly in L80 for
this version; this bug has been fixed in version 3.44. It will
work with PLINK, however.

Response
Another reader has responded to Howard O. Ehlers' letter in
the April 1982 issue. Mr. Ehlers can obtain CP/M for the
Cromemco line from: Intelligent Terminals Corp., 2320
Southeast Freeway, Houston, TX 77098 (Tel: 713/529-6696);
or from Micah, 919 Sir Francis Drake Blvd., Kentfield, CA
94904 (Tel: 415/ 456-2262).

Clarification
On page 31 of the February 1982 Lifelines, in Ron Fowler's ar-
ticle on Using the CP/M-80 BIOS For Direct Disk Accessing,
it is stated that Ward Christensen's DU.COM utility is free.
However it is not free, but is available from CPMUG. (The
latest version is on Volume 78.)

Lifelines, April 198252

We are dedicated to the achievement of a singular goal. . .
to market fully supported software that sets standards of excellence.

Standards against which all software will be measured.
Standards which require that we, as well as the OEM’s and authors
with whom we labor, constantly offer the state-of-the-art.

Our commitment to being Number One is too strong for
Lifeboat to market anything less.

The standard for fully supported software.
1651 Third Avenue, NY, NY 10028. (212) 860-0300.

TWX 710-581-2524 (LBSOFT NYK).

53Lifelines, Volume II, Number 11

VERSION LIST
March 9, 1982

The listed software is available from the authors, computer stores S Standard Version
distributors, and publishers. Except in the cases noted, all software P Processor
requires CP/M-80, SB-80, or compatible operating systems. MR Memory Required

New Products and new versions are listed in boldface.
Product s P MR
ACCESS-80 1.0 8080/Z80 54K
Accounts Payable/Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
Accounts Payable/MC 1.0 8080/Z80 56K For CP /M2.2
Accounts Payable /Structured Sys 1.3B 8080 52K w/It Works run time pkg.
Accounts Payable/Peachtree 07-13-80 48K Needs BASIC-80 4.51
Accounting Plus 8080/Z80 64K
Accounts Receivable/Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
Accounts Receivable /MC 1.0 8080/Z80 56K CP/M 2.2
Accounts Receivable /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Accounts Receivable /Structured Sys 1.4C 8080 56K w/It Works run time pkg.
Address Management System 1.0 8080 Requires 2 drives
ALDS TRSDOS 3.40 8080 32K Needs TRSDOS. TRSDOS Macro-80
ALGOL 60 '4.8C 8080 24K
ANALYST 2.0 8080 52K Needs CBASIC2,QSORT /ULTRASORT
APL/V80 3.2 Z80 48K Needs APL terminal
Apartment Management (Cornwall) 1.0 Z80 Needs CBASIC2
ASM/XITAN 3.11 Z80
Automated Patient History 1.2 8080 48K
BASIC Compiler 5.3 8080 48K
BASIC-80 Interpreter 5.21 8080 40K w/Vers. 4.51,5.21
BASIC Utility Disk 2.0 8080 48K
BaZic II 03/03
Benchmark Word Processor 2.2 Give Name & Model #'s of the video terminal)
Benchmark Mail List 1.1 Give Name & Model #'s of the video terminal)
BOSS Financial Accounting System 1.08 8080 48K Needs 2/3- drives w/min 200k each, & 132-col. printer
BOSS Demo 1.08 8080 48K
BSTAM Communication System 4.5 8080 32K
BDS C Compiler 1.45 8080 32K w/'C' book
Whitesmiths' C Compiler 2.1 8080 60K
BSTMS 1.2 8080 24K
BUG / uBUG Debuggers 2.03 Z80 24K
CBASIC2 Compiler 2.08 8080 32K w/CRUN(2,204P, & 238)
CBS Applications Builder 1.33 8080 48K Needs no support language
CIS COBOL Compiler 4.4,1 8080 48K
CIS COBOL Compact 3.46 8080 32K
FORMS 1 CIS COBOL Form Generator 1.06 8080
FORMS 2 CIS COBOL Form Generator 1.1,6a 8080
Interface for Mits Q70 Printer CP/M 1.41 or 2.XX
COBOL-80 Compiler 4.6 8080 48K
COBOL-80 PLUS M/SORT 4.01 8080 48K
CONDOR II 2.06 8080 48K
CREAM (Real Estate Acct ng) 2.3 8080 64K CBASIC needed
Crosstalk 1.4 Z80
DATASTAR Information Manager 1.101 8080 48K
Datebook-II 2.04 8080 48K Needs 80x24 terminal, N/A for CDOS, CP/M 1.4, MP/M
dBASE-II 2.3B 8080 48K
dBASE-II Demo 2.3A 8080 48K
Dental Management System 8000 8.7A 8080 48K Needs CBASIC
Dental Management System 9000 1.08 8080 48K Needs CBASIC
DESPOOL Print Spooler 2.1A 8080
DISILOG Z80 Disassembler 4.0 Z80 Zilog mnemonics
DISTEL Z80/8080 Disassembler 4.0 8080/Z80 Intel mnemonics,TDL extensions
Documate/Plus 1.4 8080 36K
Documate/Plus/Demo 1.5
EDIT Text Editor 2.06 Z80
EDIT-80 Text Editor 2.02 8080
Emulator-86 1.0 An Emulator for CP/M-86
FABS-I 2.7 8080 32K
FABS II 4.15 8080/Z80 48K
FILETRAN 1.20 32K 1-way TRS-80 Mod I,TRSDOS to Mod I CP/M
FILETRAN 1.4 32K Needs TRSDOS. 2-way TRS-80 Mod I,TRSDOS

& Mod I CP/M
FILETRAN 1.5 32K 1-way TRS-80 Mod II,TRSDOS to Mod II CP/M
Financial Modeling System 2.0 48K
Floating Point FORTH 2 8080/Z80 28K
Floating Point FORTH 3 8080/Z80 28K
FORTRAN-80 Compiler 3.43 8080 36K
FPL 56K Vers. 2.6 8080 56K
FPL 48K Vers. 2.6 8080 48K

Lifelines, April 1982
54

I l l i

VERSION LIST

Product
General Ledger /Cybernetics

s P MR
Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX

General Ledger/MC 1.0 8080/Z80 56K Needs CP/M 2.2 or MP/M
General Ledger /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
General Ledger/ Structured Sys 1.4C 8080 52K w/It Works Package
General Ledger II/CPaids 1.1 8080 48K Needs BASIC-80 4.51
GLECTOR Accounting System 2.02 8080 56K Use w/CBASIC2,Selector III
GLECTOR IV Accounting System 1.0 8080 Needs Selector IV
HDBS 1.05A + 52K
IBM/CPM 1.1 8080
Insurance Agency System 9000 1.08 8080 Needs CBASIC
Integrated Acctg Sys/Genl Ledger 8080 48K Needed for 3 pkgs, below
Integrated Acctg Sys/Accts Pyble 8080 48K
Integrated Acctg Sys/Accts Rcvble 8080 48K
Integrated Acctg Sys /Payroll 8080 48K
Interchange Z80 32K
Inventory /MicroConsultants 5.3 8080/Z80 56K Needs CP/M 2.2
Inventory /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Inventory/ Structured Sys 1.0C 8080 52K w/It Works Package
Job Cost Control System/MC 1.0 8080/Z80 56K Requires CP/M 2.2
JRT Pascal System 1.4 8080 56K
LETTERIGHT Text Editor 1.1B 8080 52K
LINKER Z80
MAC 2.0A 8080 20K
MACRO-80 Macro Assembler Package 3.43 8080/Z80
MAG/basel (LMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base2 (IMS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base3 (ADS) 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
Magic Typewriter 3 Z80 48K
Magic Wand 1.11 8080 32K
MAG/sam3 4.2 8080 32K
MAG/sam4 1.1 8080 32K Needs CBASIC
MAGSORT-C 1.0 For CBASIC
MAGSORT-M 1.0 For MBASIC
MAGSORT-M 1.0 For Compilers — BASCOM, FORTRAN-80, PL/I-80
MAILING ADDRESS Mail List System 07-13-80 8080 48K
Mail-Merge 3.0 8080
Master Tax 1.0-80 8080 48K
Matchmaker 8080 32K
MDBS 1.05A + 48K
MDBS-DRS 1.02 + 52K
MDBS-QRS 1.0 + 52K
MDBS-RTL 1.0 + 52K
MDBS-PKG + 52K w/all above MDBS products
Medical Management System 8000 8.7a 8080 Needs CBASIC
Medical Management System 9000 1.1 8080 Needs CBASIC
Microcosm Z80 CP/M 2.X or MP/M
Microspell 4.3 8080 48K Needs 150K /drive
Microspell Demo 1.0 For Dealers Only
Microstat 2.08 8080 48K Needs BASIC-80, 5.03 or later, or CBASIC
Microstat for Apple 2.0
Mince 2.6 8080 48K
Mince Demo 2.6 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASIC
Money Maestro
MP/M-I 1.0

8080/Z80 48K CP/M 1.4 or 2.2

MP/M-II 2.0 8080 48K Needs MP/M
MSORT 1.01 8080 48K
Mu LISP-80/Mu STAR Compiler 2.10 8080
Mu SIMP / Mu MATH Package 2.10 8080 muMATH 80
NAD Mail List System 3.0D 8080 48K
Nevada COBOL 2.1 8080 32K
Order Entry w/Inventory/Cybernetics Z80 Needs RM/COBOL
Panel 2.2 44K Also for MP/M
PAS-3 Medical 1.78 8080 56K Needs 132-col. printer & CBASIC
PAS-3 Dental 1.64 8080 56K Needs 132-col. printer & CBASIC
PASM Assembler 1.02 Z80
Pascal /M 4.02 8080 56K
PASCAL/MT Compiler 3.2 8080 32K
PASCAL/MT+ w/SPP 5.5 8080 52K Needs 165K/drive
PASCAL /Z Compiler 4.0 Z80 56K
Payroll/Cybernetics, Inc. Z80 Needs RM/COBOL
Payroll / Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51
Payroll /Structured Sys 1.0E 8080 60K w/It Works run time pkg.
PEARL SD
PLAN80 Financial Package (Z80/8080)

3.01
2.2

8080
8080

56K
56K

w/CBASIC2,Ultrasort II . . , x
Z80/8080 (continued next page)

Lifelines, Volume II, Number 11 55

VERSION LIST

Product
PLAN80 Demo
PL/I-80
PLINK I Linking Loader
PLINK-II Linking Loader
PMATE
POSTMASTER Mail List System
Professional Time Acctg
Programmer's Apprentice
Property Management Program (AMC)
Property Management System
Property Manager
PSORT
QSORT Sort Program
Real Estate Acquisition Programs
Remote
Residential Prop. Mngemt. Sys.
RM /COBOL Compiler
RAID
RAID w/FPP
RECLAIM Disk Verification Program
SBASIC
Scribble
SELECTOR-III-C2 Data Manager
SELECTOR-IV
Shortax
SID Symbolic Debugger
Spellguard
Standard Tax
STATPAK
STIFF UPPER LISP
STRING BIT FORTRAN Routines
STRING /80 bit FORTRAN Routines
STRING /80 bit Source
SUPER SORT I Sort Package
SELECT
T/MAKER II
T/MAKER II DEMO
TEX Text Formatter
TEXTWRITER-III
TINY C Interpreter
TINY C-II Compiler
TRS-80 Customization Disk
ULTRASORT II
Lifeboat Unlock
VISAM
Wiremaster
Wordindex
Wordmaster
WordStar
WordStar w/MailMerge
WordStar Customization Notes
XASM-05 Cross Assembler
XASM-09 Cross Assembler
XASM-51 Cross Assembler
XASM-F8 Cross Assembler
XASM-400 Cross Assembler
XASM-18 Cross Assembler
XASM-48 Cross Assembler
XASM-65 Cross Assembler
XASM-68 Cross Assembler
XYBASIC Extended Interpreter
XYBASIC Extended Disk Interpreter
XYBASIC Extended Compiler
XYBASIC Extended Romable
XYBASIC Integer Interpreter
XYBASIC Integer Compiler
XYBASIC Integer Romable
ZAP-80
Z80 Development Package
ZDM/ZDMZ Debugger
ZDT Z80 Debugger
ZSID Z80 Debugger

S P MR
1.1
1.3
3.28
1.10A
3.02
3.5
3.11a

4.2
07-13-80
1.0
1.3
2.0
2.1
3.01
1.0

§
oo

<£
oo

oo
N

>o
o!

oo

7
7

Needs CBASIC2
Needs BASIC-80
Needs CBASIC 2.07+ , CP/M-80 2.0 +
Needs BASIC-80 4.51
Needs CBASIC

Needs CBASIC

w/Cybernetics CP/M 2, OASIS, UNIX
5.0.2 8080 28K
5.0.2 8080 40K
2.1 8080 16K
5.4 8080 48K
1.3 8080
3.24 8080 48K
2.17 8080 52K
1.2 Z80 48K
1.4 8080
2.0 8080/Z80 32K
1.0 8080 48K
1.2 8080
2.8 8080 48K
1.02 8080
1.22 8080
1.22 8080
1.5 8080

8080/Z80 40K
2.5.2 8080 48K
2.4 8080 48K
2.1 8080 36K
3.6 8080 32K
800102C 8080
800201 8080
1.3C 8080
4.1C 8080 48K
1.3 8080
2.3p 8080 48K
3.12 Z80
3.0 8080 48K
1.07A 8080 40K
3.0 8080 48K
3.0 8080 48K
3.0 8080
1.05 8080 48K
1.07 8080 48K
1.09 8080 48K
1.04 8080 48K
1.03 8080 48K
1.41 8080
1.62 8080
1.97 8080
2.00 8080
2.11 8080
2.11 8080
2.0 8080
2.1 8080
1.7 8080
2.0 8080
1.7 8080
1.4 8080
3.5 Z80
1.2/2.0 Z80
1.41 1.41 Z80
1.4A Z80

Needs CBASIC
Needs CBASIC
TRSDOS,MDOS too, needs BASIC-80 5.0
N/A-Superbr'n
Needs Word Processing Program
Needs BASIC-80 4.51
Needs BASIC-80 4.2 or above

Max. record = 4096 bytes

Avail, for CDOS

Use w /BASIC-80 5.2

Needs 180K/drive
Needs WordStar

With EDIT features
Requires the XYBASIC w/EDIT features to create SOURCE

Needs 50K /drive
N / A-Magnolia ,Superbr'n ,mod .CP/M
For N'Star,Apple,IBM 8"
N/A-Superbr'n,mod. CP/M
N/A-Superbr'n,mod.CP/M

-I- These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

Lifelines, April 198256

BOY IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you’re finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE II.

It's really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

With dBASE II, you’ll write programs a lot
faster and a lot more efficiently. You’ll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the- data-
base assignments that grow into bigger and better
bottom lines.

Users tell us they’ve cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers’ problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you’re looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Also available from Lifeboat Associates.

Your competitors know of this offer.
The price of dBASE II is $700 but you can try it

free for 30 days.
Call for our Dealer Plan and OEM run-time package

prices, then take us up on our money-back guarantee.
Send us your check and we’ll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we’ll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don’t go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

®CP/M is a registered trademark of Digital Research.

Ashton-late
©Ashton-Tate 1981

Second C
lass Postage Paid

At N
ew

 York, N
.Y.

1651 Third Avenue / N
ew

 Y
ork, N

.Y. 10028

